CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4325-4335.DOI: 10.11949/0438-1157.20201786
• Energy and environmental engineering • Previous Articles Next Articles
Yuming ZHANG1(),Lifeng WAN1,2,Juntao GUAN1,Haipeng SONG3,Hang YANG3,Shiqiu GAO2
Received:
2020-12-09
Revised:
2021-01-27
Online:
2021-08-05
Published:
2021-08-05
Contact:
Yuming ZHANG
张玉明1(),万利锋1,2,管俊涛1,宋海朋3,杨行3,高士秋2
通讯作者:
张玉明
作者简介:
张玉明(1985—),男,博士,副教授,基金资助:
CLC Number:
Yuming ZHANG, Lifeng WAN, Juntao GUAN, Haipeng SONG, Hang YANG, Shiqiu GAO. Fundamental study on the fluid coking behavior of Dagang oil slurry and preparation of aromatic-rich oil[J]. CIESC Journal, 2021, 72(8): 4325-4335.
张玉明, 万利锋, 管俊涛, 宋海朋, 杨行, 高士秋. 大港油浆流化焦化行为及其富芳烃油制备基础研究[J]. 化工学报, 2021, 72(8): 4325-4335.
Add to citation manager EndNote|Ris|BibTeX
项目 | 大港油浆 | 项目 | 大港油浆 |
---|---|---|---|
密度(20℃)/(g/cm3) | 1.032 | 康氏残炭/%(质量) | 18.61 |
运动黏度(80℃)/(mm2/s) | 131.31 | 固含量/(μg/g) | 3100 |
元素组成分析 /%(质量) | n(H)/n(C) | 1.17 | |
C | 88.6 | 馏程分布/℃ | |
H | 8.62 | 初馏点 | 371 |
S | 1.34 | 10% | 416 |
N | 0.25 | 30% | 447 |
四组分分析/%(质量) | 50% | 473 | |
饱和分 | 23.46 | 70% | 500 |
芳香分 | 59.85 | 90% | 538 |
胶质 | 14.20 | 终馏点 | 600 |
沥青质(正戊烷) | 2.49 |
Table 1 The basic properties of Dagang slurry oil
项目 | 大港油浆 | 项目 | 大港油浆 |
---|---|---|---|
密度(20℃)/(g/cm3) | 1.032 | 康氏残炭/%(质量) | 18.61 |
运动黏度(80℃)/(mm2/s) | 131.31 | 固含量/(μg/g) | 3100 |
元素组成分析 /%(质量) | n(H)/n(C) | 1.17 | |
C | 88.6 | 馏程分布/℃ | |
H | 8.62 | 初馏点 | 371 |
S | 1.34 | 10% | 416 |
N | 0.25 | 30% | 447 |
四组分分析/%(质量) | 50% | 473 | |
饱和分 | 23.46 | 70% | 500 |
芳香分 | 59.85 | 90% | 538 |
胶质 | 14.20 | 终馏点 | 600 |
沥青质(正戊烷) | 2.49 |
工业分析/%(质量) | 元素分析/%(质量) | HHV/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cdaf | Hdaf | Sdaf | Ndaf | Odaf① | |
0.54 | 5.17 | 7.63 | 86.66 | 85.38 | 2.31 | 3.53 | 1.94 | 6.84 | 32.15 |
Table 2 Proximate and ultimate analysis of fluid coke
工业分析/%(质量) | 元素分析/%(质量) | HHV/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cdaf | Hdaf | Sdaf | Ndaf | Odaf① | |
0.54 | 5.17 | 7.63 | 86.66 | 85.38 | 2.31 | 3.53 | 1.94 | 6.84 | 32.15 |
项目 | 500℃ | 550℃ | 600℃ |
---|---|---|---|
收率 | |||
油收率/%(质量) | 85.54 | 83.33 | 81.66 |
焦炭收率/%(质量) | 12.52 | 13.03 | 14.51 |
气体收率/%(质量) | 1.24 | 1.84 | 3.01 |
总产物收率/%(质量) | 99.31 | 98.21 | 99.18 |
液体产物分布 | |||
汽油馏分/%(质量) | 0.12 | 0.61 | 1.01 |
柴油馏分/%(质量) | 4.41 | 5.24 | 7.22 |
VGO馏分/%(质量) | 65.49 | 66.39 | 66.47 |
重油馏分/%(质量) | 29.98 | 27.76 | 25.31 |
液体产物固含量 | |||
裂解油品固含量/(μg/g) | 214 | 199 | 191 |
脱固率/% | 93.10 | 93.58 | 93.84 |
Table 3 Variation of slurry oil cracking product distribution with temperature using quartz sand
项目 | 500℃ | 550℃ | 600℃ |
---|---|---|---|
收率 | |||
油收率/%(质量) | 85.54 | 83.33 | 81.66 |
焦炭收率/%(质量) | 12.52 | 13.03 | 14.51 |
气体收率/%(质量) | 1.24 | 1.84 | 3.01 |
总产物收率/%(质量) | 99.31 | 98.21 | 99.18 |
液体产物分布 | |||
汽油馏分/%(质量) | 0.12 | 0.61 | 1.01 |
柴油馏分/%(质量) | 4.41 | 5.24 | 7.22 |
VGO馏分/%(质量) | 65.49 | 66.39 | 66.47 |
重油馏分/%(质量) | 29.98 | 27.76 | 25.31 |
液体产物固含量 | |||
裂解油品固含量/(μg/g) | 214 | 199 | 191 |
脱固率/% | 93.10 | 93.58 | 93.84 |
项目 | 实验1 | 实验2 | 实验3 | 平均值 | 相对误差 |
---|---|---|---|---|---|
反应温度/oC | 500 | 500 | 500 | 500 | |
油收率/%(质量) | 84.38 | 83.35 | 84.32 | 84.02 | 0.80 |
焦炭收率/%(质量) | 13.93 | 14.82 | 13.89 | 14.21 | 4.29 |
气体收率/%(质量) | 1.69 | 1.83 | 1.79 | 1.77 | 4.52 |
总收率/%(质量) | 100.00 | 100.00 | 100.00 | 100.00 |
Table 4 The reliability and repeatability of the experimental device
项目 | 实验1 | 实验2 | 实验3 | 平均值 | 相对误差 |
---|---|---|---|---|---|
反应温度/oC | 500 | 500 | 500 | 500 | |
油收率/%(质量) | 84.38 | 83.35 | 84.32 | 84.02 | 0.80 |
焦炭收率/%(质量) | 13.93 | 14.82 | 13.89 | 14.21 | 4.29 |
气体收率/%(质量) | 1.69 | 1.83 | 1.79 | 1.77 | 4.52 |
总收率/%(质量) | 100.00 | 100.00 | 100.00 | 100.00 |
项目 | 500℃ | 550℃ | 600℃ |
---|---|---|---|
收率 | |||
油收率/%(质量) | 84.02 | 82.05 | 80.50 |
焦炭收率/%(质量) | 14.21 | 16.10 | 16.23 |
气体收率/%(质量) | 1.77 | 1.85 | 3.27 |
总物料收率/%(质量) | 100.00 | 100.00 | 100.00 |
液体产物分布 | |||
汽油馏分/%(质量) | 0.21 | 0.42 | 0.74 |
柴油馏分/%(质量) | 5.01 | 5.60 | 6.58 |
VGO馏分%(质量) | 68.28 | 68.30 | 67.99 |
重油馏分/%(质量) | 26.51 | 25.69 | 24.69 |
液体产物固含量 | |||
裂解油品固含量/(μg/g) | 167 | 162 | 161 |
脱固率/% | 94.61 | 94.77 | 94.81 |
Table 5 Variation of slurry oil cracking product distribution with temperature when fluid coke is used as heat carrier
项目 | 500℃ | 550℃ | 600℃ |
---|---|---|---|
收率 | |||
油收率/%(质量) | 84.02 | 82.05 | 80.50 |
焦炭收率/%(质量) | 14.21 | 16.10 | 16.23 |
气体收率/%(质量) | 1.77 | 1.85 | 3.27 |
总物料收率/%(质量) | 100.00 | 100.00 | 100.00 |
液体产物分布 | |||
汽油馏分/%(质量) | 0.21 | 0.42 | 0.74 |
柴油馏分/%(质量) | 5.01 | 5.60 | 6.58 |
VGO馏分%(质量) | 68.28 | 68.30 | 67.99 |
重油馏分/%(质量) | 26.51 | 25.69 | 24.69 |
液体产物固含量 | |||
裂解油品固含量/(μg/g) | 167 | 162 | 161 |
脱固率/% | 94.61 | 94.77 | 94.81 |
参数 | 油浆 | 石英砂裂解油 | 焦粉裂解油 |
---|---|---|---|
A1600 | 0.944 | 0.647 | 0.448 |
A1460 | 0.795 | 0.468 | 0.276 |
A1380 | 0.895 | 0.637 | 0.444 |
P | 0.739 | 0.745 | 0.754 |
fa | 0.448 | 0.452 | 0.457 |
Table 6 Calculation results of aromaticity of slurry oil and its pyrolysis oil
参数 | 油浆 | 石英砂裂解油 | 焦粉裂解油 |
---|---|---|---|
A1600 | 0.944 | 0.647 | 0.448 |
A1460 | 0.795 | 0.468 | 0.276 |
A1380 | 0.895 | 0.637 | 0.444 |
P | 0.739 | 0.745 | 0.754 |
fa | 0.448 | 0.452 | 0.457 |
分类 | 组分性质 | 含量/%(质量) | ||||
---|---|---|---|---|---|---|
Slurry oil | Sand-500 | Sand-600 | Coke-500 | Coke-600 | ||
烷烃类 | 20.61 | 15.33 | 16.36 | 12.47 | 17.59 | |
2~3环芳烃 | 萘系(带侧链) | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 |
菲系(带侧链) | 3.60 | 3.42 | 3.97 | 1.47 | 1.04 | |
蒽系(带侧链) | 0.72 | 1.40 | 2.16 | 0.48 | 0.00 | |
其他 | 9.51 | 9.34 | 10.16 | 11.63 | 10.90 | |
4环芳烃 | 芘系(带侧链) | 8.67 | 9.73 | 11.20 | 8.04 | 6.00 |
?系(带侧链) | 5.28 | 12.84 | 12.53 | 2.55 | 3.46 | |
苯并菲(带侧链) | 2.73 | 2.74 | 2.91 | 2.24 | 2.12 | |
苯并蒽(带侧链) | 36.72 | 23.19 | 23.22 | 46.47 | 44.57 | |
其他 | 0.48 | 1.50 | 1.30 | 0.48 | 0.44 | |
5环芳烃 | 9.17 | 12.00 | 11.72 | 12.15 | 12.21 | |
2~5环占比 | 77.14 | 77.42 | 79.16 | 85.48 | 80.74 |
Table 7 Content of aromatic components in slurry and its pyrolysis oil
分类 | 组分性质 | 含量/%(质量) | ||||
---|---|---|---|---|---|---|
Slurry oil | Sand-500 | Sand-600 | Coke-500 | Coke-600 | ||
烷烃类 | 20.61 | 15.33 | 16.36 | 12.47 | 17.59 | |
2~3环芳烃 | 萘系(带侧链) | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 |
菲系(带侧链) | 3.60 | 3.42 | 3.97 | 1.47 | 1.04 | |
蒽系(带侧链) | 0.72 | 1.40 | 2.16 | 0.48 | 0.00 | |
其他 | 9.51 | 9.34 | 10.16 | 11.63 | 10.90 | |
4环芳烃 | 芘系(带侧链) | 8.67 | 9.73 | 11.20 | 8.04 | 6.00 |
?系(带侧链) | 5.28 | 12.84 | 12.53 | 2.55 | 3.46 | |
苯并菲(带侧链) | 2.73 | 2.74 | 2.91 | 2.24 | 2.12 | |
苯并蒽(带侧链) | 36.72 | 23.19 | 23.22 | 46.47 | 44.57 | |
其他 | 0.48 | 1.50 | 1.30 | 0.48 | 0.44 | |
5环芳烃 | 9.17 | 12.00 | 11.72 | 12.15 | 12.21 | |
2~5环占比 | 77.14 | 77.42 | 79.16 | 85.48 | 80.74 |
热载体 | SBET/(m2/g) | Smic/ (m2/g) | Vtotal / (cm3/g) | Vmic /(cm3/g) | Dave/nm |
---|---|---|---|---|---|
新鲜焦粉 | 15.91 | 2.55 | 0.0162 | 0.0013 | 4.41 |
积炭焦粉 | 2.40 | 0 | 0.0102 | 0 | 5.26 |
Table 8 BET test results of fresh and spent fluid coke
热载体 | SBET/(m2/g) | Smic/ (m2/g) | Vtotal / (cm3/g) | Vmic /(cm3/g) | Dave/nm |
---|---|---|---|---|---|
新鲜焦粉 | 15.91 | 2.55 | 0.0162 | 0.0013 | 4.41 |
积炭焦粉 | 2.40 | 0 | 0.0102 | 0 | 5.26 |
项目 | 原始焦 | 循环1次 | 循环2次 | 循环3次 |
---|---|---|---|---|
温度/℃ | 500 | 500 | 500 | 500 |
油收率/%(质量) | 84.02 | 84.18 | 83.98 | 85.77 |
焦炭收率/%(质量) | 14.21 | 14.06 | 14.21 | 12.51 |
气体收率/%(质量) | 1.77 | 1.76 | 1.82 | 1.72 |
总收率/%(质量) | 100.00 | 100.00 | 100.00 | 100.00 |
Table 9 Product distribution of slurry oil during fluid coke circulation
项目 | 原始焦 | 循环1次 | 循环2次 | 循环3次 |
---|---|---|---|---|
温度/℃ | 500 | 500 | 500 | 500 |
油收率/%(质量) | 84.02 | 84.18 | 83.98 | 85.77 |
焦炭收率/%(质量) | 14.21 | 14.06 | 14.21 | 12.51 |
气体收率/%(质量) | 1.77 | 1.76 | 1.82 | 1.72 |
总收率/%(质量) | 100.00 | 100.00 | 100.00 | 100.00 |
1 | Lin C H, Sang J C, Chen S Y, et al. Thermal treatment of FCC slurry oil under hydrogen: correlation of hydrogen transfer ability with carbonization performance of the fractions[J]. Fuel, 2018, 233: 805-815. |
2 | Li P P, Xiong J M, Ge M L, et al. Preparation of pitch-based general purpose carbon fibers from catalytic slurry oil[J]. Fuel Processing Technology, 2015, 140: 231-235. |
3 | Guo A J, Wang F, Jiao S H, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by thermal polymerization of a distillate fraction from an FCC slurry oil after hydrofining with suspended catalyst[J]. Fuel, 2020, 276: 118037. |
4 | 代晓玉, 马远恩, 许志明, 等. 催化裂化油浆组成分布对中间相沥青光学织构的影响[J]. 化工学报, 2020, 71(6): 2678-2687. |
Dai X Y, Ma Y E, Xu Z M, et al. Effects of composition distribution of catalytic slurry oils on optical texture of mesophase pitch[J]. CIESC Journal, 2020, 71(6): 2678-2687. | |
5 | Lin C H, Wang J Q, Chen S Y, et al. Thermal treatment of fluid catalytic cracking slurry oil: determination of the thermal stability and its correlation with the quality of derived cokes[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 406-414. |
6 | Eser S, Wang G H. A laboratory study of a pretreatment approach to accommodate high-sulfur FCC decant oils as feedstocks for commercial needle coke[J]. Energy & Fuels, 2007, 21(6): 3573-3582. |
7 | Liang M, Liu S J, Fan W Y, et al. Rheological and chemical characterization of deoiled asphalt modified with FCC slurry[J]. Materials & Structures, 2016, 49(9): 3607-3617. |
8 | 王宗贤, 郭爱军, 阙国和. 辽河渣油热转化和加氢裂化过程中生焦行为的研究[J]. 燃料化学学报, 1998, 26(4): 326-333. |
Wang Z X, Guo A J, Que G H. Investigation of coke formation in thermal conversion and hydrocracking of Liaohe vacuum residuum[J]. Journal of Fuel Chemistry and Technology, 1998, 26(4): 326-333. | |
9 | 高岱巍, 徐春明, 高金森. 重油催化裂化油浆热重反应性能研究[J]. 石油炼制与化工, 2004, 35(6): 61-66. |
Gao D W, Xu C M, Gao J S. Study on the thermogravimetric reaction performance of heavy oil FCC slurry[J]. Petroleum Processing and Petrochemicals, 2004, 35(6): 61-66. | |
10 | 陈静, 周晓龙, 金鸣林, 等. FCC油浆热转化制备中间相沥青的研究[J]. 华东理工大学学报(自然科学版), 2007, 33(1): 14-18. |
Chen J, Zhou X L, Jin M L, et al. Preparation of mesophase pitch by thermal conversion of FCC slurry[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2007, 33(1): 14-18. | |
11 | Cheung T, Turpin M, Rand B. Controlled stress, oscillatory rheometry of mesophase-pitches[J]. Carbon, 1996, 34(2): 265-271. |
12 | 查庆芳, 张玉贞, 郭燕生, 等. FCC油浆富芳馏分的热解[J]. 石油学报(石油加工), 2005, 21(1): 49-56. |
Zha Q F, Zhang Y Z, Guo Y S, et al. Pyrolysis of aromatic enrichment fraction of FCC slurry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21(1): 49-56. | |
13 | 唐瑞源, 刘凯, 燕阳天, 等. 劣质重油流态化热转化提质工艺进展[J]. 石油与天然气化工, 2018, 47(5): 10-15. |
Tang R Y, Liu K, Yan Y T, et al. Progress of fluidization thermal conversion upgrading process of low-quality heavy oil[J]. Chemical Engineering of Oil & Gas, 2018, 47(5): 10-15. | |
14 | Mathieu Y, Corma A, Echard M, et al. Single and combined fluidized catalytic cracking (FCC) catalyst deactivation by iron and calcium metal–organic contaminants[J]. Applied Catalysis A General, 2014, 469: 451-465. |
15 | Wallenstein D, Farmer D, Knoell J, et al. Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method[J]. Applied Catalysis A: General, 2013, 462/463: 91-99. |
16 | Argyle M, Bartholomew C. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
17 | Mahamulkar S, Yin K, Agrawal P K, et al. Formation and oxidation/gasification of carbonaceous deposits: a review[J]. Industrial & Engineering Chemistry Research, 2016, 55(37): 9760-9818. |
18 | 任杰, 任勇默, 袁海宽. 裂化催化剂失活动力学及平衡催化剂活性模型[J]. 化工学报, 2015, 66(7): 2498-2504. |
Ren J, Ren Y M, Yuan H K. Model considering catalyst deactivation kinetics and equilibrium activity for catalytic cracking unit[J]. CIESC Journal, 2015, 66(7): 2498-2504. | |
19 | Hu M, Laghari M, Cui B H, et al. Catalytic cracking of biomass tar over char supported nickel catalyst[J]. Energy, 2018, 145(15): 228-237. |
20 | Han J Z, Wang X D, Yue J R, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
21 | Zeng X, Wang Y, Yu J, et al. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy & Fuels, 2011, 25(3): 1092-1098. |
22 | Jin L J, Bai X Y, Li Y, et al. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Processing Technology, 2016, 147: 41-46. |
23 | Furimsky E. Characterization of cokes from fluid/flexi-coking of heavy feeds[J]. Fuel Processing Technology, 2000, 67(3): 205-230. |
24 | 张亮, 张玉明, 张浩然, 等. 催化裂化油浆固含量测定及组成分析[J]. 化工进展, 2019, 38(9): 4052-4059. |
Zhang L, Zhang Y M, Zhang H R, et al. Determination and composition analysis of solid contents in FCC slurry oil[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4052-4059. | |
25 | Zhang Y M, Yu D P, Li W L, et al. Fundamentals of petroleum residue cracking gasification for coproduction of oil and syngas[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15032-15040. |
26 | Guo A J, Zhang X J, Wang Z X. Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry[J]. Fuel Processing Technology, 2008, 89(7): 643-650. |
27 | 赵晓隆, 李会鹏, 赵华, 等. 两种催化油浆的热重反应动力学研究[J]. 石油与天然气化工, 2014, 43(4): 357-361. |
Zhao X L, Li H P, Zhao H, et al. Study on the thermogravimetric reaction dynamics of two kinds of FCC slurry[J]. Chemical Engineering of Oil & Gas, 2014, 43(4): 357-361. | |
28 | Wiktorsson L, Wanzl W. Kinetic parameters for coal pyrolysis at low and high heating rates—a comparison of data from different laboratory equipment[J]. Fuel, 2000, 79(6): 701-716. |
29 | Wang D L, Chen Z H, Zhou Z M, et al. Catalytic upgrading of volatiles from coal pyrolysis over sulfated carbon-based catalysts derived from waste red oil[J]. Fuel Processing Technology, 2019, 189: 98-109. |
30 | Min Z H, Yimsiri P, Asadullah M, et al. Catalytic reforming of tar during gasification(Part Ⅱ): Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011, 90(7): 2545-2552. |
31 | Li X H, Ma J S, Li L L, et al. Semi-coke as solid heat carrier for low-temperature coal tar upgrading[J]. Fuel Processing Technology, 2016, 143: 79-85. |
32 | 王遥, 崔灵瑞, 任满年, 等. 催化裂化油浆结构表征及提高其抗老化性能的实验研究[J]. 石油炼制与化工, 2018, 49(10): 79-83. |
Wang Y, Cui L R, Ren M N, et al. Experimental study on structure characterization and anti-aging behavior of FCC slurry[J]. Petroleum Processing and Petrochemicals, 2018, 49(10): 79-83. | |
33 | Pütün E. Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst[J]. Energy, 2010, 35(7): 2761-2766. |
34 | 李学军, 查庆芳, 杨小军, 等. 催化裂化油浆富芳烃馏分的组成及其炭化行为[J]. 石油化工, 2007, 36(11): 1104-1109. |
Li X J, Zha Q F, Yang X J, et al. Composition of aromatics-rich fraction in catalytic cracking slurry and its carbonization[J]. Petrochemical Technology, 2007, 36(11): 1104-1109. |
[1] | Tursun YALKUNJAN, Abduhani HAIRAT, Yue PAN, Abulizi ABULIKEMU, Talifu DILINUER, Fengyun MA, Shaoping XU. Gasification characteristics of coal in decoupled triple bed [J]. CIESC Journal, 2019, 70(8): 3040-3049. |
[2] | LAI Dengguo, ZHAN Jinhui, CHEN Zhaohui, HAN Zhennan, WU Rongcheng, XU Guangwen. Oil shale pyrolysis by solid heat carrier in internal-structured moving bed [J]. CIESC Journal, 2017, 68(10): 3647-3657. |
[3] | LI Fangzhou, LI Wenying, FENG Jie. Characteristics of mass and heat transfer in lignite pyrolysis with solid heat carrier [J]. CIESC Journal, 2016, 67(4): 1136-1144. |
[4] | ZHOU Jieqiong1,ZHANG Li1,WU Qicheng2,GUO Huafeng2,ZUO Jun2,LIU Yunyi1. Experimental study on oil shale retorting with low temperature carrier gas under an areobic condition [J]. Chemical Industry and Engineering Progree, 2012, 31(06): 1238-1243. |
[5] | ZHANG Lidong1,2 ,LI Shaohua2,YU Kansheng2,ZHANG Xuan2,WANG Qing2. Cold experiments on mixing performance of oil shale particle and solid heat carrier in rotary retorting [J]. , 2011, 30(3): 492-. |
[6] | XIONG Chu’an,WANG Yonggang,XU Deping. Development of rheological properties of Chinese coal-oil slurry and liquefaction residue in direct liquefaction [J]. , 2009, 28(4): 597-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||