[1] |
李文英, 邓靖, 喻长连. 褐煤固体热载体热解提质工艺进展[J]. 煤化工, 2012, 40(1): 1-5. LI W Y, DENG J, YU C L. Development of lignite pyrolysis with solid heat carrier[J]. Coal Chem. Ind., 2012, 40(1): 1-5.
|
[2] |
LIANG P, WANG Z F, BI J C. Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer[J]. Fuel, 2008, 87(4/5): 435-442.
|
[3] |
郭治, 杜铭华, 杜万斗. 固体热载体褐煤热解过程的数学模型与模拟计算[J]. 神华科技, 2010, 8(2): 69-72. GUO Z, DU M H, DU W D. The mathematical model and simulation of solid heat carrier pyrolysis of lignite[J]. Shenhua Sci. Technol., 2010, 8(2): 69-72.
|
[4] |
王洪亮, 蒙涛, 张华, 等. 球型固体热载体煤粉热解过程传热计算及分析[J]. 洁净煤技术, 2014, 20(3): 90-94. WANG H L, MENG T, ZHANG H, et al. Heat transfer calculation and analysis of coal particle pyrolysis with solid ball heat carrier[J]. Clean Coal Technol., 2014, 20(3): 90-94.
|
[5] |
ZHAO Y X, SERIO M A, SOLOMON P R. A general model for devolatilization of large coal particles[J]. Symp. (Int.) Combust., 1996, 26(2): 3145-3151.
|
[6] |
刘训良, 曹欢, 王淦, 等. 煤颗粒热解的传热传质分析[J]. 计算物理, 2014, 31(1): 59-66. LIU X L, CAO H, WANG G, et al. Numerical analysis of heat and mass transfer during pyrolysis of coal particle[J]. Chin. J. Comput. Phys., 2014, 31(1): 59-66.
|
[7] |
LIU X L, WANG G, PAN G, et al. Numerical analysis of heat transfer and volatile evolution of coal particle[J]. Fuel, 2013, 106: 667-673.
|
[8] |
ADESANYA B A, PHAM H N. Mathematical modelling of devolatilization of large coal particles in a convective environment[J]. Fuel, 1995, 74(6): 896-902.
|
[9] |
胡国新, 田学伟, 许伟, 等. 大颗粒煤在移动床中的热解模型[J]. 上海交通大学学报, 2001, 35(5): 733-736. HU G X, TIAN X W, XU W, et al. Devolatilization model of large coal particles in moving bed[J]. J. Shanghai Jiaotong Univer., 2001, 35(5): 733-736.
|
[10] |
CHERN J S, HAYHURST A N. A simple theoretical analysis of the pyrolysis of an isothermal particle of coal[J]. Combust. Flame, 2010, 157(5): 925-933.
|
[11] |
SUN J, CHEN M M. A theoretical analysis of heat transfer due to particle impact[J]. Int. J. Heat Mass Transfer, 1988, 31(5): 969-975.
|
[12] |
NATARAJAN V V R, HUNT M L. Heat transfer in vertical granular flows[J]. Exp. Heat Transfer, 1997, 10(2): 89-107.
|
[13] |
WATSON L V, MCCARTHY J J. Heat conduction in granular materials[J]. AIChE J., 2001, 47(5): 1052-1059.
|
[14] |
BHARADWAJ R, KETTERHAGEN W R, HANCOCK B C. Discrete element simulation study of a Freeman powder rheometer[J]. Chem. Eng. Sci., 2010, 65(21): 5747-5756.
|
[15] |
WAKAO N, KAGUEI S, FUNAZKRI T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers[J]. Chem. Eng. Sci., 1979, 34(3): 325-336.
|
[16] |
RANZ W E. Friction and transfer coefficients for single particles and packed beds[J]. Chem. Eng. Prog., 1952, 48(5): 247-253.
|
[17] |
ROWE P N, CLAXTON K T, LEWIS J B. Heat and mass transfer from a single sphere in an extensive flowing fluid[J]. Trans. Inst. Chem. Eng., 1965, 43(1): T14-T31.
|
[18] |
GUNN D J. Transfer of heat or mass to particles in fixed and fluidised beds[J]. Heat Mass Transfer, 1978, 21(4): 467-476.
|
[19] |
郭雪岩, 柴辉生, 晁东海. 大颗粒流化床传热数值模拟与气固传热模型比较[J].上海理工大学学报, 2012, 34(1): 81-87. GUO X Y, CHAI H S, CHAO D H. Numerical simulation of large particle fluidized bed and comparison of gas-particle heat transfer models[J]. J. Univ. Shanghai Sci. Technol., 2012, 34(1): 81-87.
|
[20] |
杨景标, 张彦文, 蔡宁生. 煤热解动力学的单一反应模型和分布活化能模型比较[J]. 热能动力工程, 2010, 25(3): 301-305. YANG J B, ZHANG Y W, CAI N S. A comparison of a single reaction model with a distributed activation energy one based on coal pyrolysis kinetics[J]. J. Eng. Therm. Energy Power, 2010, 25(3): 301-305.
|
[21] |
陶文铨. 数值传热学[M]. 上海: 上海交通大学出版社, 2001: 79-103. TAO W Q. Numerical Heat Transfer[M]. Shanghai: Shanghai Jiaotong University Press, 2001: 79-103.
|
[22] |
CAI J M, YAO F S, YI W M, et al. New temperature integral approximation for nonisothermal kinetics[J]. AIChE J., 2006, 52(4): 1554-1557
|
[23] |
GAO F. Applications of matlab in mathematical analysis[J]. J. Software, 2011, 6(7): 1225-1229.
|
[24] |
孙玉凤, 高虹, 王通洲. 生物质热解分布活化能模型的遗传算法实现[J]. 沈阳理工大学学报, 2010, 29(3): 63-66. SUN Y F, GAO H, WANG T Z. Application of genetic algorithm in distributed activation energy model of biomass pyrolysis[J]. J. Shenyang Ligong Univ., 2010, 29(3): 63-66.
|
[25] |
MUSTAFA G, SEMMIN F. A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data (note)[J]. Appl. Math. Comput., 2002, 130: 619-628.
|
[26] |
MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy mode[J]. Energy Fuels, 1998, 12: 864-869.
|
[27] |
YI Q, FENG J, LU B C, et al. Energy evaluation for lignite pyrolysis by solid heat carrier coupled with gasification[J]. Energy Fuels, 2013, 27(8): 4523-4533.
|