[1] |
陈兆辉, 敦启孟, 石勇, 等. 热解温度和反应气氛对输送床煤快速热解的影响[J]. 化工学报, 2017, 68(4):1566-1573. CHEN Z H, DUN Q M, SHI Y, et al. Effects of pyrolysis temperature and atmosphere on rapid coal pyrolysis in transport bed reactor[J]. CIESC Journal, 2017, 68(4):1566-1573.
|
[2] |
贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-136. JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2):129-136.
|
[3] |
胡文瑞, 翟光明, 李景明. 中国非常规油气的潜力和发展[J]. 中国工程科学, 2010, 12(5):25-29. HU W R, ZHAI G M, LI J M. Potential and development of unconventional hydrocarbon resources in China[J]. Engineering Sciences, 2010, 12(5):25-29.
|
[4] |
钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报(地球科学版), 2006, 36(6):877-887. QIAN J L, WANG J Q, LI S Y. World oil shale utilization and its future[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6):877-887.
|
[5] |
刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报(地球科学版), 2006, 36(6):869-876. LIU Z J, DONG Q S, YE S Q, et al. The situation of oil shale resources in China[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6):869-876.
|
[6] |
钱家麟, 尹亮. 油页岩:石油的补充能源[M]. 北京:中国石化出版社, 2008. QIAN J L, YIN L. Oil Shale:Oil Supplement Energy[M]. Beijing:China Petrochemical Press, 2008.
|
[7] |
杨庆春, 周怀荣, 杨思宇, 等. 油页岩开发利用技术及系统集成的研究进展[J]. 化工学报, 2016, 67(1):109-118. YANG Q C, ZHOU H R, YANG S Y, et al. Research progress on utilization and systemic integration technologies of oil shale[J]. CIESC Journal, 2016, 67(1):109-118.
|
[8] |
LI X X, ZHOU H R, WANG Y J, et al. Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier[J]. Energy, 2015, 87:605-614.
|
[9] |
曾帅, 周怀荣, 钱宇. 煤热解制油和油页岩制油技术评述与比较分析[J]. 化工学报, 2017, 68(10):3658-3668. ZENG S, ZHOU H R, QIAN Y. Review and techno-economic analysis of coal pyrolysis to liquid and oil shale to liquid processes[J]. CIESC Journal, 2017, 68(10):3658-3668.
|
[10] |
张秋民, 关珺, 何德民. 几种典型的油页岩干馏技术[J]. 吉林大学学报(地球科学版), 2006, 36(6):1019-1026. ZHANG Q M, GUAN J, HE D M. Typical technologies for oil shale retorting[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6):1019-1026.
|
[11] |
侯吉礼, 马跃, 李术元, 等. 世界油页岩资源的开发利用现状[J]. 化工进展, 2015, 34(5):1183-1190. HOU J L, MA Y, LI S Y, et al. Development and utilization of oil shale worldwide[J]. Chemical Industry and Engineering Process, 2015, 34(5):1183-1190.
|
[12] |
COOK E W. Oil-shale technology in USA[J]. Fuel, 1974, 53(3):146-151.
|
[13] |
赖登国. 内构件移动床固体热载体油页岩热解技术研究[D]. 北京:中国科学院大学, 2017. LAI D G. Pyrolysis of oil shale by solid heat carrier in moving bed with internals[D]. Beijing:University of Chinese Academy of Sciences, 2017.
|
[14] |
李文英, 邓靖, 喻长连. 褐煤固体热载体热解提质工艺进展[J]. 煤化工, 2012, 1:1-5. LI W Y, DENG J, YU C L. Development of lignite pyrolysis with solid heat carrier[J]. Coal Chemical Industry, 2012, 1:1-5.
|
[15] |
李文英, 喻长连, 李晓红, 等. 褐煤固体热载体催化热解研究进展[J]. 煤炭科学技术, 2012, 40(5):111-115. LI W Y, YU C L, LI X H, et al. Research progress on catalysis pyrolysis of lignite solid heat carrier[J]. Coal Science and Technology, 2012, 40(5):111-115.
|
[16] |
秦宏, 岳耀奎, 刘洪鹏, 等. 中国油页岩干馏技术现状与发展趋势[J]. 化工进展, 2015, 34(5):1191-1198. QIN H, YUE Y K, LIU H P, et al. Current status and prospect of oil shale retorting technologies in China[J]. Chemical Industry and Engineering Process, 2015, 34(5):1191-1198.
|
[17] |
WANG S, JIANG X M, HAN X X, et al. Investigation of Chinese oil shale resources comprehensive utilization performance[J]. Energy, 2012, 42(1):224-232.
|
[18] |
JIANG X M, HAN X X, CUI Z G. New technology for the comprehensive utilization of Chinese oil shale resources[J]. Energy, 2007, 32(5):772-777.
|
[19] |
刘振宇. 煤快速热解制油技术问题的化学反应工程根源:逆向传热与传质[J]. 化工学报, 2016, 67(1):1-5. LIU Z Y. Origin of common problems in fast coal pyrolysis technologies for tar:the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1):1-5
|
[20] |
MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62(2):119-135.
|
[21] |
畅志兵, 初茉, 张超, 等. 桦甸油页岩热解过程中热沥青的组成变化规律[J]. 燃料化学学报, 2016, 44(11):1310-1317. CHANG Z B, CHU M, ZHANG C, et al. Variation of chemical composition of thermal bitumen during Huadian oil shale pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11):1310-1317.
|
[22] |
BRAUN R L, ROTHMAN A J. Oil-shale pyrolysis-kinetics and mechanism of oil production[J]. Fuel, 1975, 54(2):129-131.
|
[23] |
LI S Y, YUE C T. Study of different kinetic models for oil shale pyrolysis[J]. Fuel Processing Technology, 2004, 85(1):51-61.
|
[24] |
BURNHAM A K, HAPPE J A. On the mechanism of kerogen pyrolysis[J]. Fuel, 1984, 63(10):1353-1356.
|
[25] |
LAI D G, CHEN Z H, LIN L X, et al. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash[J]. Energy & Fuels, 2015, 29(4):2219-2226.
|
[26] |
LAI D G, ZHAN J H, TIAN Y, et al. Mechanism of kerogen pyrolysis in terms of chemical structure transformation[J]. Fuel, 2017, 199:504-511.
|
[27] |
张盛诚, 何榕. 单颗粒煤粉热解时焦油的二次反应和扩散[J]. 清华大学学报(自然科学版), 2016, 56(6):605-610. ZHANG S C, HE R. Secondary reactions and diffusion of tar during single coal particle pyrolysis[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(6):605-610.
|
[28] |
LIN L X, LAI D G, SHI Z, et al. Distinctive oil shale pyrolysis behavior in indirectly heated fixed bed with internals[J]. RSC Advances, 2017, 7:21467-21474.
|
[29] |
ZHANG Y, HAN Z N, WU H, et al. Interactive matching between the temperature profile and secondary reactions of oil shale pyrolysis[J]. Energy & Fuels, 2016, 30(4):2865-2873.
|
[30] |
LIN L X, ZHANG C, LI H J, et al. Pyrolysis in indirectly heated fixed bed with internals:the first application to oil shale[J]. Fuel Processing Technology, 2015, 138:147-155.
|
[31] |
许光文, 高士秋, 余剑, 等. 燃料解耦热化学转化基础与技术[M]. 北京:科学出版社, 2016. XU G W, GAO S Q, YU J, et al. Thermochemical Conversion Fundamentals and Technologies Based on Decoupling for Fuels[M]. Beijing:Science Press, 2016.
|
[32] |
战金辉, 赖登国, 许光文. 油页岩:固体石油[J]. 科学世界, 2016, 12:68-73. ZHAN J H, LAI D G, XU G W. Oil shale:solid petroleum[J]. Science World, 2016, 12:68-73.
|
[33] |
LAI D G, CHEN Z H, SHI Y, et al. Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals[J]. Fuel, 2015, 159:943-951.
|
[34] |
LAI D G, ZHANG G Y, XU G W. Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals[J]. Fuel Processing Technology, 2017, 158:191-198.
|
[35] |
LAI D G, SHI Y, GENG S L, et al. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals[J]. Fuel, 2016, 173:138-145.
|
[36] |
张纯. 外热式内构件移动床低阶碎煤热解技术研究[D]. 北京:中国科学院过程工程研究所, 2015. ZHANG C. Pyrolysis of small-size low-rank coal in indirectly heated moving bed with internals[D]. Beijing:Institute of Process Engineering, Chinese Academy of Sciences, 2015.
|
[37] |
王擎, 崔达, 迟铭书, 等. 利用GC-MS与NMR技术研究干馏终温对桦甸页岩油组成性质的影响[J]. 化工学报, 2015, 66(7):2670-2677. WANG Q, CUI D, CHI M S, et al. Influence of final retorting temperature on composition and property of Huadian shale oil[J]. CIESC Journal, 2015, 66(7):2670-2677.
|
[38] |
NAZZAL J M. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale[J]. Energy Conversion and Management, 2008, 49(11):3278-3286.
|
[39] |
WILLIAMS P T, NAZZAL J M. Pyrolysis of oil shales:influence of particle grain size on polycyclic aromatic compounds in the derived shale oils[J]. Journal of the Institute of Energy, 1999, 72(491):48-55.
|
[40] |
ZHANG C, WU R C, HU E F, et al. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy & Fuels, 2014, 28(11):7294-7302.
|
[41] |
ZHANG C, WU R C, XU G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy & Fuels, 2014, 28(1):236-244.
|