CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4469-4478.DOI: 10.11949/0438-1157.20210291
• Thermodynamics • Previous Articles Next Articles
Zhirong CHEN(),Yun TONG,Shenfeng YUAN,Hong YIN(
)
Received:
2021-02-25
Revised:
2021-05-17
Online:
2021-09-05
Published:
2021-09-05
Contact:
Hong YIN
通讯作者:
尹红
作者简介:
陈志荣(1963—),男,硕士,教授,CLC Number:
Zhirong CHEN, Yun TONG, Shenfeng YUAN, Hong YIN. Dissociation constants and activity coefficients of methionine in KCl aqueous solutions[J]. CIESC Journal, 2021, 72(9): 4469-4478.
陈志荣, 童云, 袁慎峰, 尹红. 蛋氨酸在KCl溶液中的解离常数与活度系数[J]. 化工学报, 2021, 72(9): 4469-4478.
T/℃ | mKCl/(mol/kg) | pK1* | pK2* | cKCl/(mol/L) | pK1* | pK2* |
---|---|---|---|---|---|---|
25 | 0.25 | 2.163±0.004 | 9.098±0.003 | 0.25 | 2.167 | 9.102 |
0.5 | 2.186±0.006 | 9.108±0.006 | 0.49 | 2.193 | 9.115 | |
1.0 | 2.240±0.003 | 9.138±0.004 | 0.97 | 2.254 | 9.152 | |
1.5 | 2.299±0.007 | 9.225±0.001 | 1.43 | 2.319 | 9.244 | |
2.0 | 2.361±0.009 | 9.300±0.006 | 1.89 | 2.387 | 9.326 | |
3.0 | 2.485±0.009 | 9.463±0.007 | 2.75 | 2.523 | 9.501 | |
4.0 | 2.616±0.010 | 9.640±0.007 | 3.55 | 2.667 | 9.691 | |
30 | 0.25 | 2.158±0.002 | 8.969±0.001 | 0.25 | 2.162 | 8.973 |
0.5 | 2.181±0.004 | 8.979±0.003 | 0.49 | 2.188 | 8.986 | |
1.0 | 2.230±0.002 | 9.028±0.004 | 0.97 | 2.243 | 9.041 | |
1.5 | 2.288±0.006 | 9.093±0.004 | 1.43 | 2.307 | 9.112 | |
2.0 | 2.344±0.005 | 9.167±0.008 | 1.89 | 2.370 | 9.193 | |
3.0 | 2.456±0.010 | 9.328±0.009 | 2.75 | 2.494 | 9.366 | |
4.0 | 2.587±0.011 | 9.500±0.012 | 3.55 | 2.640 | 9.551 | |
35 | 0.25 | 2.155±0.003 | 8.846±0.004 | 0.25 | 2.159 | 8.850 |
0.5 | 2.174±0.005 | 8.855±0.006 | 0.49 | 2.181 | 8.862 | |
1.0 | 2.223±0.002 | 8.903±0.005 | 0.97 | 2.236 | 8.916 | |
1.5 | 2.276±0.004 | 8.967±0.006 | 1.43 | 2.295 | 8.986 | |
2.0 | 2.330±0.006 | 9.038±0.005 | 1.89 | 2.356 | 9.064 | |
3.0 | 2.445±0.008 | 9.199±0.008 | 2.75 | 2.483 | 9.237 | |
4.0 | 2.564±0.010 | 9.369±0.011 | 3.55 | 2.615 | 9.420 |
Table 1 pKi*(±S.D.) for methionine in KCl solutions at different temperatures
T/℃ | mKCl/(mol/kg) | pK1* | pK2* | cKCl/(mol/L) | pK1* | pK2* |
---|---|---|---|---|---|---|
25 | 0.25 | 2.163±0.004 | 9.098±0.003 | 0.25 | 2.167 | 9.102 |
0.5 | 2.186±0.006 | 9.108±0.006 | 0.49 | 2.193 | 9.115 | |
1.0 | 2.240±0.003 | 9.138±0.004 | 0.97 | 2.254 | 9.152 | |
1.5 | 2.299±0.007 | 9.225±0.001 | 1.43 | 2.319 | 9.244 | |
2.0 | 2.361±0.009 | 9.300±0.006 | 1.89 | 2.387 | 9.326 | |
3.0 | 2.485±0.009 | 9.463±0.007 | 2.75 | 2.523 | 9.501 | |
4.0 | 2.616±0.010 | 9.640±0.007 | 3.55 | 2.667 | 9.691 | |
30 | 0.25 | 2.158±0.002 | 8.969±0.001 | 0.25 | 2.162 | 8.973 |
0.5 | 2.181±0.004 | 8.979±0.003 | 0.49 | 2.188 | 8.986 | |
1.0 | 2.230±0.002 | 9.028±0.004 | 0.97 | 2.243 | 9.041 | |
1.5 | 2.288±0.006 | 9.093±0.004 | 1.43 | 2.307 | 9.112 | |
2.0 | 2.344±0.005 | 9.167±0.008 | 1.89 | 2.370 | 9.193 | |
3.0 | 2.456±0.010 | 9.328±0.009 | 2.75 | 2.494 | 9.366 | |
4.0 | 2.587±0.011 | 9.500±0.012 | 3.55 | 2.640 | 9.551 | |
35 | 0.25 | 2.155±0.003 | 8.846±0.004 | 0.25 | 2.159 | 8.850 |
0.5 | 2.174±0.005 | 8.855±0.006 | 0.49 | 2.181 | 8.862 | |
1.0 | 2.223±0.002 | 8.903±0.005 | 0.97 | 2.236 | 8.916 | |
1.5 | 2.276±0.004 | 8.967±0.006 | 1.43 | 2.295 | 8.986 | |
2.0 | 2.330±0.006 | 9.038±0.005 | 1.89 | 2.356 | 9.064 | |
3.0 | 2.445±0.008 | 9.199±0.008 | 2.75 | 2.483 | 9.237 | |
4.0 | 2.564±0.010 | 9.369±0.011 | 3.55 | 2.615 | 9.420 |
I/(mol/kg) | -ΔH1*/(kJ/mol) | -ΔH2*/(kJ/mol) |
---|---|---|
0.25 | 1.4 | 44.3 |
0.5 | 2.1 | 44.5 |
1.0 | 3.1 | 45.0 |
1.5 | 4.1 | 45.4 |
2.0 | 5.4 | 46.1 |
3.0 | 7.0 | 46.4 |
4.0 | 9.1 | 47.7 |
Table 2 Enthalpy of dissolution at different ionic strength
I/(mol/kg) | -ΔH1*/(kJ/mol) | -ΔH2*/(kJ/mol) |
---|---|---|
0.25 | 1.4 | 44.3 |
0.5 | 2.1 | 44.5 |
1.0 | 3.1 | 45.0 |
1.5 | 4.1 | 45.4 |
2.0 | 5.4 | 46.1 |
3.0 | 7.0 | 46.4 |
4.0 | 9.1 | 47.7 |
mKCl/(mol/kg) | E+/mV | E-/mV | ΔE(1)/mV | ln(ms | |
---|---|---|---|---|---|
0.1 | 151.3 | 48.2 | 103.1 | 0.76777 | -2.5669 |
0.3 | 175.5 | 21.0 | 154.5 | 0.68627 | -1.5805 |
0.5 | 187.3 | 8.6 | 178.7 | 0.64902 | -1.1254 |
0.7 | 195.4 | 0.6 | 194.8 | 0.62599 | -0.8251 |
1.0 | 203.6 | -8.2 | 211.8 | 0.60389 | -0.5044 |
Table 3 Values of electrochemical cell(1)
mKCl/(mol/kg) | E+/mV | E-/mV | ΔE(1)/mV | ln(ms | |
---|---|---|---|---|---|
0.1 | 151.3 | 48.2 | 103.1 | 0.76777 | -2.5669 |
0.3 | 175.5 | 21.0 | 154.5 | 0.68627 | -1.5805 |
0.5 | 187.3 | 8.6 | 178.7 | 0.64902 | -1.1254 |
0.7 | 195.4 | 0.6 | 194.8 | 0.62599 | -0.8251 |
1.0 | 203.6 | -8.2 | 211.8 | 0.60389 | -0.5044 |
mA/(mol/kg) | mKCl/(mol/kg) | ||||
---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1.0 | |
0.025 | 1.0018 | 1.0022 | 1.0025 | 1.0029 | 1.0035 |
0.050 | 1.0026 | 1.0035 | 1.0041 | 1.005 | 1.0062 |
0.100 | 1.0026 | 1.0042 | 1.0058 | 1.0074 | 1.0099 |
0.150 | 1.0018 | 1.0045 | 1.0067 | 1.0093 | 1.0129 |
0.200 | 1.0019 | 1.0051 | 1.0082 | 1.0117 | 1.0165 |
Table 4 Ratio of mean ionic activity coefficient of KCl in methionine aqueous solution to that in water at different molalities of KCl and methionine
mA/(mol/kg) | mKCl/(mol/kg) | ||||
---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1.0 | |
0.025 | 1.0018 | 1.0022 | 1.0025 | 1.0029 | 1.0035 |
0.050 | 1.0026 | 1.0035 | 1.0041 | 1.005 | 1.0062 |
0.100 | 1.0026 | 1.0042 | 1.0058 | 1.0074 | 1.0099 |
0.150 | 1.0018 | 1.0045 | 1.0067 | 1.0093 | 1.0129 |
0.200 | 1.0019 | 1.0051 | 1.0082 | 1.0117 | 1.0165 |
参数 | 参数值 |
---|---|
a1 | 1.5854×10-1 |
a2 | 1.5835×10-1 |
a3 | -1.6440 |
a4 | 6.6315×10-4 |
a5 | 4.3176 |
a6 | 1.3558×10-2 |
Table 5 Coefficients of Eq.(29)
参数 | 参数值 |
---|---|
a1 | 1.5854×10-1 |
a2 | 1.5835×10-1 |
a3 | -1.6440 |
a4 | 6.6315×10-4 |
a5 | 4.3176 |
a6 | 1.3558×10-2 |
mA/(mol/kg) | mKCl/(mol/kg) | ||||
---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1.0 | |
0.025 | 1.0093 | 1.0330 | 1.0641 | 1.1031 | 1.1784 |
0.050 | 1.0035 | 1.0153 | 1.0338 | 1.0595 | 1.1125 |
0.100 | 0.9967 | 0.9950 | 0.9998 | 1.0111 | 1.0408 |
0.150 | 0.9965 | 0.9944 | 0.9987 | 1.0097 | 1.0389 |
0.200 | 1.0027 | 1.0132 | 1.0305 | 1.0550 | 1.1064 |
Table 6 Ratio of mean ionic activity coefficients of methionine in the presence of KCl aqueous solution to that in water at different molalities of KCl and methionine
mA/(mol/kg) | mKCl/(mol/kg) | ||||
---|---|---|---|---|---|
0.1 | 0.3 | 0.5 | 0.7 | 1.0 | |
0.025 | 1.0093 | 1.0330 | 1.0641 | 1.1031 | 1.1784 |
0.050 | 1.0035 | 1.0153 | 1.0338 | 1.0595 | 1.1125 |
0.100 | 0.9967 | 0.9950 | 0.9998 | 1.0111 | 1.0408 |
0.150 | 0.9965 | 0.9944 | 0.9987 | 1.0097 | 1.0389 |
0.200 | 1.0027 | 1.0132 | 1.0305 | 1.0550 | 1.1064 |
i | Ai | S.E. | |
---|---|---|---|
1 | 0.2095 | 2.437 | 0.019 |
2 | 0.2380 | 9.339 | 0.0074 |
Table 7 Parameters of DH model
i | Ai | S.E. | |
---|---|---|---|
1 | 0.2095 | 2.437 | 0.019 |
2 | 0.2380 | 9.339 | 0.0074 |
T/K | Species | S.E. | ||||
---|---|---|---|---|---|---|
298.15 | H2B+ | -4.939 | 0.1009 | 9.316 | 0.03460 | 0.0019 |
303.15 | H2B+ | -4.912 | 0.1340 | 9.199 | 0.03002 | 0.0077 |
308.15 | H2B+ | -4.931 | 0.1040 | 9.348 | 0.0348 | 0.00169 |
298.15 | B- | -22.10 | 0.1530 | -5.810 | 0.05501 | 0.0110 |
303.15 | B- | -21.82 | 0.1594 | -5.807 | 0.05449 | 0.0125 |
308.15 | B- | -21.55 | 0.1593 | -5.771 | 0.05533 | 0.0128 |
Table 8 Pitzer coefficients for methionine species in KCl media at different temperatures
T/K | Species | S.E. | ||||
---|---|---|---|---|---|---|
298.15 | H2B+ | -4.939 | 0.1009 | 9.316 | 0.03460 | 0.0019 |
303.15 | H2B+ | -4.912 | 0.1340 | 9.199 | 0.03002 | 0.0077 |
308.15 | H2B+ | -4.931 | 0.1040 | 9.348 | 0.0348 | 0.00169 |
298.15 | B- | -22.10 | 0.1530 | -5.810 | 0.05501 | 0.0110 |
303.15 | B- | -21.82 | 0.1594 | -5.807 | 0.05449 | 0.0125 |
308.15 | B- | -21.55 | 0.1593 | -5.771 | 0.05533 | 0.0128 |
1 | Finkelstein J D. Methionine metabolism in liver diseases[J]. The American Journal of Clinical Nutrition, 2003, 77(5): 1094-1095. |
2 | Willke T. Methionine production: a critical review[J]. Applied Microbiology and Biotechnology, 2014, 98(24): 9893-9914. |
3 | Antony R, Li Y F. BDNF secretion from C2C12 cells is enhanced by methionine restriction[J]. Biochemical and Biophysical Research Communications, 2020, 533(4): 1347-1351. |
4 | Yesmin S, Uddin M E, Chacrabati R, et al. Effect of methionine supplementation on the growth performance of rabbit[J]. Bangladesh Journal of Animal Science, 2013, 42(1): 40-43. |
5 | Wang J, Cui K, Ma T, et al. Effects of dietary methionine deficiency followed by replenishment on the growth performance and carcass characteristics of lambs[J]. Animal Production Science, 2019, 59(2): 243. |
6 | Sanderson S M, Gao X, Dai Z, et al. Methionine metabolism in health and cancer: a nexus of diet and precision medicine[J]. Nature Reviews. Cancer, 2019, 19(11): 625-637. |
7 | Lees E K, Król E, Grant L, et al. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21[J]. Aging Cell, 2014, 13(5): 817-827. |
8 | Oguzie E E, Li Y, Wang F H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion[J]. Journal of Colloid and Interface Science, 2007, 310(1): 90-98. |
9 | Lussling T, Muller K P, Schreyer G, et al. Process for the recovery of methionine and potassium bicarbonate: US4303621[P]. 1981-12-01. |
10 | Consortium Fuer Elektrochemische Industrie Gmbh. Method for fermentative production of L-methionine: CA20042456483[P]. 2004-08-05. |
11 | Sanders J P M, Sheldon R A. Comparison of the sustainability metrics of the petrochemical and biomass-based routes to methionine[J]. Catalysis Today, 2015, 239: 44-49. |
12 | 韩振亚, 苏焕斌, 张燕, 等. 蛋氨酸生产现状分析[J]. 广东化工, 2015, 42(19): 101-102. |
Han Z Y, Su H B, Zhang Y, et al. The production situation of D, L-methionine analysis[J]. Guangdong Chemical Industry, 2015, 42(19): 101-102. | |
13 | Niu Q, Zhou C R, Zhan Z L. Investigation on standard molar enthalpy of combustion, specific heat capacity and thermal behavior of methionine[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(3): 1805-1811. |
14 | Sharma V K, Zinger A, Millero F J, et al. Dissociation constants of protonated methionine species in NaCl media[J]. Biophysical Chemistry, 2003, 105(1): 79-87. |
15 | Lytkin A I, Chernikov V V, Krutova O N, et al. Thermodynamics of the dissolution of crystalline L-methionine in water[J]. Russian Journal of Physical Chemistry A, 2016, 90(5): 969-972. |
16 | Soto-Campos A M, Mohammad K K, Juan H V. Activity coefficients of the electrolyte and the amino acid in water + NaNO3 + glycine and water + NaCl + DL-methionine systems at 298.15 K[J]. Biophysical Chemistry, 1997, 67(1/2/3):97-105. |
17 | Pathare B, Tambe V, Patil V. A review of analytical techniques for determination of dissociation constant[J]. International Journal of Pharmacy and Pharmaceutical Sciences, 2014, 6(8): 2747-2757. |
18 | Lebrón-Paler A, Pemberton J E, Becker B A, et al. Determination of the acid dissociation constant of the biosurfactant monorhamnolipid in aqueous solution by potentiometric and spectroscopic methods[J]. Analytical Chemistry, 2006, 78(22): 7649-7658. |
19 | Ray P C, Munichandraiah N, Das P K. Dissociation constants of some substituted cinnamic acids in protic solvents: measurements by hyper-Rayleigh scattering and potentiometric techniques[J]. Chemical Physics, 1996, 211(1/2/3): 499-505. |
20 | Jano I, Hardcastle J E, Zhao K, et al. General equation for calculating the dissociation constants of polyprotic acids and bases from measured retention factors in high-performance liquid chromatography[J]. Journal of Chromatography A, 1997, 762(1/2): 63-72. |
21 | Hardcastle J E, Vermillion-Salsbury R, Zhao K, et al. Use of secondary equilibria in reversed-phase high-performance liquid chromatography for the determination of dissociation constants of polyprotic leukotrienes[J]. Journal of Chromatography A, 1997, 763(1/2): 199-203. |
22 | 王水. 7-氨基头孢烷酸反应结晶过程研究[D]. 天津:天津大学, 2005. |
Wang S. Reaction crystallization process of 7-aminocephalosporic acid [D]. Tianjin: Tianjin University, 2005. | |
23 | 王琴萍, 邢长宇, 陈洪涛, 等. HCl-NaCl-C2H6O2-H2O体系中HCl热力学[J]. 化工学报, 2004, 55(9): 1406-1411. |
Wang Q P, Xing C Y, Chen H T, et al. Thermodynamics of HCl in system of HCl-NaCl-C2H6O2-H2O[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(9): 1406-1411. | |
24 | Zemaitis J F, Clark D M, Rafal M, et al. Handbook of Aqueous Electrolyte Thermodynamics[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1986. |
25 | The National Institute of Standards and Technology. Solubility [DS/OL]. [2021-01-01]. . |
26 | Nightingale E R. Phenomenological theory of ion solvation. effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. |
27 | Pinho S P, Silva C M, Macedo E A. Solubility of amino acids: a group-contribution model involving phase and chemical equilibria[J]. Industrial & Engineering Chemistry Research, 1994, 33(5): 1341-1347. |
28 | Khoshkbarchi M K, Vera J H. A simplified perturbed hard-sphere model for the activity coefficients of amino acids and peptides in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 4319-4327. |
29 | Mohammad K K, Juan H V. Measurement of activity coefficients of amino acids in aqueous electrolyte solutions: experimental data for the systems H2O + NaCl + glycine and H2O + NaCl + DL-alanine at 25℃[J]. Industrial & Engineering Chemistry Research, 1996, 35 (8): 2735-2742. |
30 | Khoshkbarchi M K, Vera J H. Effect of NaCl and KCl on the solubility of amino acids in aqueous solutions at 298.2 K: measurements and modeling[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 2445-2451. |
31 | Pitzer K S. Thermodynamics of electrolytes (I): Theoretical basis and general equations[J]. The Journal of Physical Chemistry, 1973, 77(2): 268-277. |
32 | Bretti C, Giuffrè O, Lando G, et al. Solubility, protonation and activity coefficients of some aminobenzoic acids in NaClaq and (CH3)4NClaq, at different salt concentrations, at T = 298.15 K[J]. Journal of Molecular Liquids, 2015, 212: 825-832. |
33 | William M H. CRC Handbook of Chemistry and Physics[M]. 96th ed. Boca Raton: CRC Press, 2014: 1077. |
34 | Anderko A, Wang P M, Rafal M. Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes[J]. Fluid Phase Equilibria, 2002, 194/195/196/197: 123-142. |
35 | Millero F J, Pierrot D. A chemical equilibrium model for natural waters[J]. Aquatic Geochemistry, 1998, 4(1): 153-199. |
36 | Møller N. The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration[J]. Geochimica et Cosmochimica Acta, 1988, 52(4): 821-837. |
37 | Pitzer K S. Activity Coefficients in Electrolyte Solutions[M]. 2nd ed. Boca Raton: CRC Press, 2018: 76-143. |
[1] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[2] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[3] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[4] | Jin CAI, Xiaohui WANG, Han TANG, Guangjin CHEN, Changyu SUN. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution [J]. CIESC Journal, 2023, 74(1): 408-415. |
[5] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard [J]. CIESC Journal, 2022, 73(7): 3099-3108. |
[6] | Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry [J]. CIESC Journal, 2022, 73(6): 2543-2551. |
[7] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[8] | Yanlong JIANG, Ni ZHANG, Danran LI, Bingbing ZHU, Yichen JIANG, Haijun CHEN, Yuezhao ZHU. Selected ionic liquids by COSMO-RS method for tar removal [J]. CIESC Journal, 2022, 73(4): 1704-1713. |
[9] | Zirui WU, Rui SUN, Lingfeng SHI, Hua TIAN, Xuan WANG, Gequn SHU. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures [J]. CIESC Journal, 2022, 73(4): 1483-1492. |
[10] | Wenxin MEN, Qingshou PENG, Xia GUI. Phase equilibrium of CO2 hydrate in the presence of four different quaternary ammonium salts [J]. CIESC Journal, 2022, 73(4): 1472-1482. |
[11] | Yukun SUN, Tao YANG, Jiangtao WU. Measurement of vapor-liquid equilibrium for R32+R1234yf+R1234ze(E) [J]. CIESC Journal, 2022, 73(3): 1063-1071. |
[12] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Robust optimization of process parameters of simulated moving bed based on equilibrium theory [J]. CIESC Journal, 2022, 73(2): 792-800. |
[13] | Hao XU, Wei CHEN, Zoulu LI. Study on the characteristics of the second type heat pump with [Li(TX-7)]SCN/H2O as the working fluid pair [J]. CIESC Journal, 2022, 73(2): 577-586. |
[14] | Jiebing WANG, Jintong GAO, Zhenyuan XU. Experimental study on solar interfacial evaporation based on vapor pressure characteristics of different solutions [J]. CIESC Journal, 2022, 73(2): 663-671. |
[15] | CUI Yunhao, QIAO Jianxin, WANG Xiaotao, SONG Bin, YANG Zhaohui, DAI Wei, LI Haibing. Stirling cooler operating in room temperature [J]. CIESC Journal, 2021, 72(S1): 390-397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||