CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2543-2551.DOI: 10.11949/0438-1157.20220260
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jian CAO(),Nannan YE,Guancong JIANG,Yao QIN,Shibo WANG,Jiahua ZHU,Xiaohua LU()
Received:
2022-03-01
Revised:
2022-05-02
Online:
2022-06-30
Published:
2022-06-05
Contact:
Xiaohua LU
通讯作者:
陆小华
作者简介:
曹健(1998—),男,博士研究生,基金资助:
CLC Number:
Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry[J]. CIESC Journal, 2022, 73(6): 2543-2551.
曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
Add to citation manager EndNote|Ris|BibTeX
化学品 | CAS号 | 纯度(质量分数) | 供应商 |
---|---|---|---|
H2O2 | 7722-84-1 | ≥30% | 上海凌峰化学试剂有限公司 |
正丙醇 | 71-23-8 | 99.7% | Aladdin |
氯化钾 | 7758-02-3 | ≥99.995% | Aladdin |
商业碳Cabot | — | — | 美国卡博特公司 (型号:Norit) |
生物骨架碳BioMC | — | — | 实验室自制 |
1% Pd/BioMC | — | — | 实验室自制 |
1% Pd/Cabot | — | — | 实验室自制 |
超纯水 | — | — | 实验室超纯水机自制 (型号:PLUS-E2-10TJ) |
Table1 Reagents and materials used in this experiment
化学品 | CAS号 | 纯度(质量分数) | 供应商 |
---|---|---|---|
H2O2 | 7722-84-1 | ≥30% | 上海凌峰化学试剂有限公司 |
正丙醇 | 71-23-8 | 99.7% | Aladdin |
氯化钾 | 7758-02-3 | ≥99.995% | Aladdin |
商业碳Cabot | — | — | 美国卡博特公司 (型号:Norit) |
生物骨架碳BioMC | — | — | 实验室自制 |
1% Pd/BioMC | — | — | 实验室自制 |
1% Pd/Cabot | — | — | 实验室自制 |
超纯水 | — | — | 实验室超纯水机自制 (型号:PLUS-E2-10TJ) |
多孔碳材料 | 比表面积 ap/ (m2/g) | 孔容Vg /(m3/g) | |
---|---|---|---|
介孔 | 微孔 | ||
Cabot | 705 | 0.414×10-6 | 0.241×10-6 |
BioMC | 863 | 1.561×10-6 | 0.160×10-6 |
1% Pd/Cabot | 796 | 0.424×10-6 | 0.287×10-6 |
1% Pd/BioMC | 927 | 1.619×10-6 | 0.181×10-6 |
Table 2 The BET characterization of porous carbon materials
多孔碳材料 | 比表面积 ap/ (m2/g) | 孔容Vg /(m3/g) | |
---|---|---|---|
介孔 | 微孔 | ||
Cabot | 705 | 0.414×10-6 | 0.241×10-6 |
BioMC | 863 | 1.561×10-6 | 0.160×10-6 |
1% Pd/Cabot | 796 | 0.424×10-6 | 0.287×10-6 |
1% Pd/BioMC | 927 | 1.619×10-6 | 0.181×10-6 |
传质系数 | 数值 |
---|---|
ks,null/ (mg/(m2·s)) | 1.516×10-5 |
ks,pd/ (mg/(m2·s)) | 3.988×10-4 |
kd,meso/ (mg/(m3·s)) | 2.038×105 |
kd,micro/ (mg/(m3·s)) | 8.318×104 |
Table 3 Results of mass transfer coefficients
传质系数 | 数值 |
---|---|
ks,null/ (mg/(m2·s)) | 1.516×10-5 |
ks,pd/ (mg/(m2·s)) | 3.988×10-4 |
kd,meso/ (mg/(m3·s)) | 2.038×105 |
kd,micro/ (mg/(m3·s)) | 8.318×104 |
多孔碳材料 | 扩散阻力 | 反应阻力 (s/mg) | 总阻力 (s/mg) | ||
---|---|---|---|---|---|
介孔阻力 | 微孔阻力 | 扩散总阻力 | |||
1%(质量)Pd/BioMC | 101 | 2221 | 97 | 90 | 187 |
1%(质量)Pd/Cabot | 388 | 1406 | 1794 | 105 | 1899 |
BioMC | 105 | 2523 | 100 | 3466 | 3566 |
Cabot | 398 | 1674 | 2072 | 4323 | 6395 |
Table 4 Mass transfer resistance distribution of four porous carbons
多孔碳材料 | 扩散阻力 | 反应阻力 (s/mg) | 总阻力 (s/mg) | ||
---|---|---|---|---|---|
介孔阻力 | 微孔阻力 | 扩散总阻力 | |||
1%(质量)Pd/BioMC | 101 | 2221 | 97 | 90 | 187 |
1%(质量)Pd/Cabot | 388 | 1406 | 1794 | 105 | 1899 |
BioMC | 105 | 2523 | 100 | 3466 | 3566 |
Cabot | 398 | 1674 | 2072 | 4323 | 6395 |
1 | Ding L, Wei Y Y, Li L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9: 155. |
2 | Lin R B, Li L B, Zhou H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. |
3 | Ding Y, Zhao Y, Li Y T, et al. A high-performance all-metallocene-based, non-aqueous redox flow battery[J]. Energy & Environmental Science, 2017, 10(2): 491-497. |
4 | Arntz D. Trends in the chemical industry[J]. Catalysis Today, 1993, 18(2): 173-198. |
5 | Chng L L, Erathodiyil N, Ying J Y. Nanostructured catalysts for organic transformations[J]. Accounts of Chemical Research, 2013, 46(8): 1825-1837. |
6 | Fujimori T, Morelos-Gómez A, Zhu Z, et al. Conducting linear chains of sulphur inside carbon nanotubes[J]. Nature Communications, 2013, 4: 2162. |
7 | Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
8 | Li W, Wu Z X, Wang J X, et al. A perspective on mesoporous TiO2 materials[J]. Chemistry of Materials, 2014, 26(1): 287-298. |
9 | Pan X L, Fan Z L, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507-511. |
10 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
11 | Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure[J]. Journal of the American Chemical Society, 2005, 127(39): 13508-13509. |
12 | Wu N H, Ji X Y, An R, et al. Generalized Gibbs free energy of confined nanoparticles[J]. AIChE Journal, 2017, 63(10): 4595-4603. |
13 | Tu R, Chen S Y, Cao W, et al. The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2(B)/anatase supported Pd catalyst[J]. Catalysis Communications, 2017, 89: 69-72. |
14 | Tu R, Li L C, Zhang S Y, et al. Carbon-modified mesoporous anatase/TiO2(B) whisker for enhanced activity in direct synthesis of hydrogen peroxide by palladium[J]. Catalysts, 2017, 7(6): 175. |
15 | Wu N H, Ji X Y, Li L C, et al. Mesoscience in supported nano-metal catalysts based on molecular thermodynamic modeling: a mini review and perspective[J]. Chemical Engineering Science, 2021, 229: 116164. |
16 | Demirel Y, Sandler S I. Nonequilibrium thermodynamics in engineering and science[J]. The Journal of Physical Chemistry B, 2004, 108(1): 31-43. |
17 | Prigogine I. Moderation et transformation irreversible des systemes ouverts[J]. Bull. Cl. Sci. Acad. R Belg., 1945, 31: 600-606. |
18 | 陆小华, 吉远辉, 刘洪来. 非平衡热力学在界面传递过程中的应用[J]. 中国科学: 化学, 2011, 41(9): 1540-1547. |
Lu X H, Ji Y H, Liu H L. Non-equilibrium thermodynamics analysis and its application for interfacial mass transfer[J]. Scientia Sinica (Chimica), 2011, 41(9): 1540-1547. | |
19 | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(S1): 223-232. |
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(S1): 223-232. | |
20 | Liu C, Feng X, Ji X Y, et al. The study of dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions with a statistical rate theory[J]. Chinese Journal of Chemical Engineering, 2004, 12(1): 128-130. |
21 | 陆小华, 吉远辉, 冯新, 等. 离子液体捕集二氧化碳非平衡热力学研究方法学探讨[J]. 中国科学: 化学, 2012, 42(3): 245-259. |
Lu X H, Ji Y H, Feng X, et al. Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids[J]. Scientia Sinica (Chimica), 2012, 42(3): 245-259. | |
22 | Xie W L, Ji X Y, Feng X, et al. Mass transfer rate enhancement for CO2 separation by ionic liquids: effect of film thickness[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 366-372. |
23 | Xie W L, Ji X Y, Feng X, et al. Mass-transfer rate enhancement for CO2 separation by ionic liquids: theoretical study on the mechanism[J]. AIChE Journal, 2015, 61(12): 4437-4444. |
24 | Ji X Y, Chen D L, Wei T, et al. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode[J]. Chemical Engineering Science, 2001, 56(24): 7017-7024. |
25 | Ostonen A, Bervas J, Uusi-Kyyny P, et al. Experimental and theoretical thermodynamic study of distillable ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate[J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10445-10454. |
26 | 谢文龙. 面向分离CO2的离子液体膜中纳微界面反应传递机制的研究[D]. 南京: 南京工业大学, 2016. |
Xie W L. Study on reaction transfer mechanism of nano micro interface in ionic liquid membrane for CO2 separation[D]. Nanjing: Nanjing University of Technology, 2016. | |
27 | Blin J L, Léonard A, Yuan Z Y, et al. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies[J]. Angewandte Chemie International Edition, 2003, 42(25): 2872-2875. |
28 | Sun M H, Huang S Z, Chen L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563. |
29 | Zheng X F, Shen G F, Wang C, et al. Bio-inspired Murray materials for mass transfer and activity[J]. Nature Communications, 2017, 8: 14921. |
30 | Wang S S, Chen J J, Li L C, et al. Mass transfer behavior of methane in porous carbon materials[J]. AIChE Journal, 2022, 68(3): e17521. |
31 | Cao W, Tow G M, Lu L H, et al. Diffusion of CO2/CH4 confined in narrow carbon nanotube bundles[J]. Molecular Physics, 2016, 114(16/17): 2530-2540. |
32 | Chen L, Ji T, Yuan R X, et al. Unveiling mesopore evolution in carbonized wood: interfacial separation, migration, and degradation of lignin phase[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2489-2495. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[9] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[10] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[11] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Qianqian WANG, Mingyan LIU, Yongli MA. Study on the effect of ultrasonic degassing in water [J]. CIESC Journal, 2023, 74(4): 1693-1702. |
[14] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[15] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||