CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4458-4468.DOI: 10.11949/0438-1157.20210232
• Reviews and monographs • Previous Articles Next Articles
Lei PENG(),Yan JIANG(
),Ruxin XIA
Received:
2021-02-07
Revised:
2021-04-15
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yan JIANG
通讯作者:
姜岩
作者简介:
彭蕾(1997—),女,硕士研究生,基金资助:
CLC Number:
Lei PENG, Yan JIANG, Ruxin XIA. The mechanism and research progress of bioremediation of Cr(Ⅵ) pollution[J]. CIESC Journal, 2021, 72(9): 4458-4468.
彭蕾, 姜岩, 夏如馨. 微生物修复Cr(Ⅵ)污染作用机制及研究进展[J]. 化工学报, 2021, 72(9): 4458-4468.
微生物 | 生物吸附剂产生菌 | 影响因素 | 最大吸附量 |
---|---|---|---|
真菌 | Aspergillus niger[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 97.1 mg/g |
Penicillium chrysogenum XJ-1[ | 反应时间、Cr(Ⅵ)浓度、接种量 | 52.7 mg/g | |
细菌 | Bacillus salmalaya 139SI[ | pH、反应时间、Cr(Ⅵ)浓度 | 20.4 mg/g |
Bosea sp.Zer-1[ | pH、Cr(Ⅵ)浓度、接种量 | 55.0 mg/L | |
微藻 | Spirulina sp.[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 90.9 mg/g |
Spirulina platensis[ | pH、反应时间、Cr(Ⅵ)浓度、接种量 | 100.0 mg/g |
Table 1 Biological absorbent for Cr(Ⅵ) adsorption
微生物 | 生物吸附剂产生菌 | 影响因素 | 最大吸附量 |
---|---|---|---|
真菌 | Aspergillus niger[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 97.1 mg/g |
Penicillium chrysogenum XJ-1[ | 反应时间、Cr(Ⅵ)浓度、接种量 | 52.7 mg/g | |
细菌 | Bacillus salmalaya 139SI[ | pH、反应时间、Cr(Ⅵ)浓度 | 20.4 mg/g |
Bosea sp.Zer-1[ | pH、Cr(Ⅵ)浓度、接种量 | 55.0 mg/L | |
微藻 | Spirulina sp.[ | pH、反应时间、温度、Cr(Ⅵ)浓度、接种量 | 90.9 mg/g |
Spirulina platensis[ | pH、反应时间、Cr(Ⅵ)浓度、接种量 | 100.0 mg/g |
微生物 | 菌株 | 还原部位 | pH | 温度/℃ | 转速/(r/min) | 时间/h | 初始浓度/(mg/L) | 去除率/% |
---|---|---|---|---|---|---|---|---|
细菌 | Aeribacillus pallidus BK1[ | 细胞内 | 7.5 | 60 | 180 | 36 | 100.0 | 86.9 |
Bacillus sp.SFC 500-1E[ | 细胞内 | 7.0 | 28 | 150 | 72 | 25.0 | 80.0 | |
Bacillus sp.CRB-1[ | 细胞内 | 7.0 | 42 | — | 24 | 50.0 | 100.0 | |
Geobacter sulfurreducens PCA[ | 细胞内、外 | 7.0 | 30 | 180 | 144 | 5.2 | 99.7 | |
Pseudochrobactrum saccharolyticum W1[ | 细胞内、表面 | — | 30 | 180 | 60 | 200.0 | 53.7 | |
Pseudomonas brenneri[ | 细胞内、表面 | 6.0 | 30 | — | — | 60.0 | 96.3 | |
Oceanobacillus oncorhynchi W4[ | 细胞内、表面 | 9.0 | 30 | 180 | 72 | 200.0 | 74.2 | |
Shewanella sp.[ | 细胞内、外 | 7.0 | 37 | 180 | 1/3 | 500.0 | 89.0 | |
Bacillus sp.CRB-B1[ | 细胞内、表面、外 | 7.0 | 37 | 150 | 24 | 150.0 | 89.6 | |
Bacillus sp.TCL[ | 细胞内、表面、外 | 7.5 | 37 | 150 | 16 | 200.0 | 100.0 | |
真菌 | A. flavus CR500[ | 细胞内 | 6.5 | 28 | — | 16 | 100.0 | 99.0 |
Cellulosimicrobium funkei sp.AR6[ | 细胞内 | 7.0 | 35 | 200 | 40 | 200.0 | 100.0 | |
Penicillium oxalicum SL2[ | 细胞内、外 | — | 30 | 180 | 96 | 210.4 | 64.3 |
Table 2 Microorganisms with Cr(Ⅵ) transformation ability
微生物 | 菌株 | 还原部位 | pH | 温度/℃ | 转速/(r/min) | 时间/h | 初始浓度/(mg/L) | 去除率/% |
---|---|---|---|---|---|---|---|---|
细菌 | Aeribacillus pallidus BK1[ | 细胞内 | 7.5 | 60 | 180 | 36 | 100.0 | 86.9 |
Bacillus sp.SFC 500-1E[ | 细胞内 | 7.0 | 28 | 150 | 72 | 25.0 | 80.0 | |
Bacillus sp.CRB-1[ | 细胞内 | 7.0 | 42 | — | 24 | 50.0 | 100.0 | |
Geobacter sulfurreducens PCA[ | 细胞内、外 | 7.0 | 30 | 180 | 144 | 5.2 | 99.7 | |
Pseudochrobactrum saccharolyticum W1[ | 细胞内、表面 | — | 30 | 180 | 60 | 200.0 | 53.7 | |
Pseudomonas brenneri[ | 细胞内、表面 | 6.0 | 30 | — | — | 60.0 | 96.3 | |
Oceanobacillus oncorhynchi W4[ | 细胞内、表面 | 9.0 | 30 | 180 | 72 | 200.0 | 74.2 | |
Shewanella sp.[ | 细胞内、外 | 7.0 | 37 | 180 | 1/3 | 500.0 | 89.0 | |
Bacillus sp.CRB-B1[ | 细胞内、表面、外 | 7.0 | 37 | 150 | 24 | 150.0 | 89.6 | |
Bacillus sp.TCL[ | 细胞内、表面、外 | 7.5 | 37 | 150 | 16 | 200.0 | 100.0 | |
真菌 | A. flavus CR500[ | 细胞内 | 6.5 | 28 | — | 16 | 100.0 | 99.0 |
Cellulosimicrobium funkei sp.AR6[ | 细胞内 | 7.0 | 35 | 200 | 40 | 200.0 | 100.0 | |
Penicillium oxalicum SL2[ | 细胞内、外 | — | 30 | 180 | 96 | 210.4 | 64.3 |
胁迫类型 | 微生物 | 胁迫因子 | Cr(Ⅵ)去除 |
---|---|---|---|
金属离子 | P. brenneri[ | Fe(Ⅱ)、Mn(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)、Mg(Ⅱ) | 抑制 |
Chelatococcus daeguensis TAD1[ | Cu(Ⅱ)、Zn(Ⅱ)、Ni(Ⅱ) | 抑制 | |
Bacillus sp.TCL[ | Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ) | 无明显影响 | |
氧阴离子 | Bacillus sp.CRB-B1[ | SO42-、HCO3-、NO3- | 抑制(NO3-) |
P. oxalicum SL2[ | SO42- | 促进 |
Table 3 Effects of removal of Cr(Ⅵ) by cells under other pollution factors stress
胁迫类型 | 微生物 | 胁迫因子 | Cr(Ⅵ)去除 |
---|---|---|---|
金属离子 | P. brenneri[ | Fe(Ⅱ)、Mn(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)、Mg(Ⅱ) | 抑制 |
Chelatococcus daeguensis TAD1[ | Cu(Ⅱ)、Zn(Ⅱ)、Ni(Ⅱ) | 抑制 | |
Bacillus sp.TCL[ | Cd(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ) | 无明显影响 | |
氧阴离子 | Bacillus sp.CRB-B1[ | SO42-、HCO3-、NO3- | 抑制(NO3-) |
P. oxalicum SL2[ | SO42- | 促进 |
微生物 | 有机物 类型 | Cr(Ⅵ)浓度/(mg/L) | Cr(Ⅵ) 去除率/% | 有机物浓度/ (mg/L) | 有机物 去除率/% |
---|---|---|---|---|---|
P. putida SKG-1 MTCC[ | 五氯苯酚 | 500.0 | 80.0 | 100 | 100.0 |
Serratia marcescens ZD-9[ | 邻二氯苯 | 20.0 | 80.0 | 1290 | 90.0 |
Pseudomonas gessardii sp.LZ-E[ | 萘 | 10.0 | 95.0 | 800 | 77.0 |
Bacillus sp.[ | 苯酚 | 100.0 | — | 50 | — |
Aeromonas hydrophila LZ-MG14[ | 孔雀石绿 | 18.3 | 93.7 | 200 | 96.9 |
Table 4 Typical microorganisms of co-removal of Cr(Ⅵ) combined organic pollutants
微生物 | 有机物 类型 | Cr(Ⅵ)浓度/(mg/L) | Cr(Ⅵ) 去除率/% | 有机物浓度/ (mg/L) | 有机物 去除率/% |
---|---|---|---|---|---|
P. putida SKG-1 MTCC[ | 五氯苯酚 | 500.0 | 80.0 | 100 | 100.0 |
Serratia marcescens ZD-9[ | 邻二氯苯 | 20.0 | 80.0 | 1290 | 90.0 |
Pseudomonas gessardii sp.LZ-E[ | 萘 | 10.0 | 95.0 | 800 | 77.0 |
Bacillus sp.[ | 苯酚 | 100.0 | — | 50 | — |
Aeromonas hydrophila LZ-MG14[ | 孔雀石绿 | 18.3 | 93.7 | 200 | 96.9 |
1 | Jobby R, Jha P, Yadav A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review[J]. Chemosphere, 2018, 207: 255-266. |
2 | Elahi A, Arooj I, Bukhari D A, et al. Successive use of microorganisms to remove chromium from wastewater[J]. Applied Microbiology and Biotechnology, 2020, 104(9): 3729-3743. |
3 | Dhal B, Thatoi H N, Das N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. Journal of Hazardous Materials, 2013, 250/251: 272-291. |
4 | 胡静, 李东, 胡思扬, 等. 牺牲铁阳极法修复铬(Ⅵ)污染土壤实验研究[J]. 重庆工商大学学报(自然科学版), 2017, 34(4): 95-100. |
Hu J, Li D, Hu S Y, et al. Cr(Ⅵ)-contaminated soil remediation by sacrificing Fe-anode[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2017, 34(4): 95-100. | |
5 | Thatoi H, Das S, Mishra J, et al. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review[J]. Journal of Environmental Management, 2014, 146: 383-399. |
6 | 王兴润, 李磊, 颜湘华, 等. 铬污染场地修复技术进展[J]. 环境工程, 2020, 38(6): 1-8, 23. |
Wang X R, Li L, Yan X H, et al. Progress in remediation of chromium-contaminated sites[J]. Environmental Engineering, 2020, 38(6): 1-8, 23. | |
7 | Prabhakaran D C, Bolaños-Benitez V, Sivry Y, et al. Mechanistic studies on the bioremediation of Cr(Ⅵ) using Sphingopyxis macrogoltabida SUK2c, a Cr(Ⅵ) tolerant bacterial isolate[J]. Biochemical Engineering Journal, 2019, 150: 107292. |
8 | Kumar V, Dwivedi S K. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater[J]. Chemosphere, 2019, 237: 124567. |
9 | Abigail M E A, Samuel M S, Chidambaram R. Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box-Behnken optimization, equilibrium, kinetics and thermodynamic studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 49: 156-164. |
10 | Ren B Q, Zhang Q, Zhang X C, et al. Biosorption of Cr(Ⅵ) from aqueous solution using dormant spores of Aspergillus niger[J]. RSC Advances, 2018, 8(67): 38157-38165. |
11 | Xu X J, Zhang Z Y, Huang Q Y, et al. Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions[J]. Geomicrobiology Journal, 2018, 35(1): 40-49. |
12 | Dadrasnia A, Chuan Wei K S, Shahsavari N, et al. Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(Ⅵ) from aqueous solution[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15321-15338. |
13 | Zhang H, Liu L, Chang Q, et al. Biosorption of Cr(Ⅵ) ions from aqueous solutions by a newly isolated Bosea sp. strain Zer-1 from soil samples of a refuse processing plant[J]. Canadian Journal of Microbiology, 2015, 61(6): 399-408. |
14 | Rezaei H. Biosorption of chromium by using Spirulina sp[J]. Arabian Journal of Chemistry, 2016, 9(6): 846-853. |
15 | dal Magro C, Deon M C, Thomé A, et al. Biossorção passiva de cromo (Ⅵ) através da microalga Spirulina platensis[J]. Química Nova, 2013, 36(8): 1139-1145. |
16 | Banerjee S, Misra A, Chaudhury S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. Journal of Hazardous Materials, 2019, 367: 215-223. |
17 | Tan H, Wang C, Zeng G Q, et al. Bioreduction and biosorption of Cr(Ⅵ) by a novel Bacillus sp. CRB-B1 strain[J]. Journal of Hazardous Materials, 2020, 386: 121628. |
18 | Zeng Q, Hu Y T, Yang Y R, et al. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium[J]. Journal of Hazardous Materials, 2019, 368: 149-155. |
19 | Joutey N T, Sayel H, Bahafid W, et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms[J]. Reviews of Environmental Contamination and Toxicology, 2015, 233: 45-69. |
20 | Viti C, Marchi E, Decorosi F, et al. Molecular mechanisms of Cr(Ⅵ) resistance in bacteria and fungi[J]. FEMS Microbiology Reviews, 2014, 38(4): 633-659. |
21 | Tang X, Huang Y, Li Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111699. |
22 | Thompson D K, Chourey K, Wickham G S, et al. Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge[J]. BMC Genomics, 2010, 11(1): 1-16. |
23 | Monsieurs P, Moors H, Houdt R, et al. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network[J]. BioMetals, 2011, 24(6): 1133-1151. |
24 | Henne K L, Nakatsu C H, Thompson D K, et al. High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes[J]. BMC Microbiology, 2009, 9(1): 199. |
25 | Gang H Y, Xiao C Y, Xiao Y, et al. Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress[J]. Environment International, 2019, 127: 94-102. |
26 | Karpus J, Bosscher M, Ajiboye I, et al. Chromate binding and removal by the molybdate-binding protein ModA[J]. ChemBioChem, 2017, 18(7): 633-637. |
27 | Holland S L, Avery S V. Actin-mediated endocytosis limits intracellular Cr accumulation and Cr toxicity during chromate stress[J]. Toxicological Sciences, 2009, 111(2): 437-446. |
28 | 苏长青. 铬污染土壤中Cr(Ⅵ)的微生物还原及Cr(Ⅲ)的稳定性研究[D]. 长沙: 中南大学, 2010. |
Su C Q. Chromium pollution in the soil microbial reduction of Cr (Ⅵ) and Cr (Ⅲ) stability study[D]. Changsha: Central South University, 2010. | |
29 | Zhu Y F, Yan J W, Xia L, et al. Mechanisms of Cr(Ⅵ) reduction by Bacillus sp. CRB-1, a novel Cr(Ⅵ)-reducing bacterium isolated from tannery activated sludge[J]. Ecotoxicology and Environmental Safety, 2019, 186: 109792. |
30 | Ma Y, Zhong H, He Z G. Cr(Ⅵ) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(Ⅵ)-reducing thermophile isolated from Tengchong geothermal region, China[J]. Chemical Engineering Journal, 2019, 371: 524-534. |
31 | Ontañon O M, Fernandez M, Agostini E, et al. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(Ⅵ) by Bacillus sp. SFC 500-1E[J]. Environmental Science and Pollution Research, 2018, 25(16): 16111-16120. |
32 | Gong Y F, Werth C J, He Y X, et al. Intracellular versus extracellular accumulation of hexavalent chromium reduction products by Geobacter sulfurreducens PCA[J]. Environmental Pollution, 2018, 240: 485-492. |
33 | Li M K, Zhuo Y T, Hu Y T, et al. Exploration on the bioreduction mechanism of Cr(Ⅵ) by a gram-positive bacterium: Pseudochrobactrum saccharolyticum W1[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109636. |
34 | Banerjee S, Kamila B, Barman S, et al. Interlining Cr(Ⅵ) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater[J]. Journal of Environmental Management, 2019, 233: 271-282. |
35 | Kheirabadi M, Mahmoodi R, Mollania N, et al. Fast chromium removal by Shewanella sp.: an enzymatic mechanism depending on serine protease[J]. International Journal of Environmental Science and Technology, 2020, 17(1): 143-152. |
36 | Karthik C, Ramkumar V S, Pugazhendhi A, et al. Biosorption and biotransformation of Cr(Ⅵ) by novel Cellulosimicrobium funkei strain AR6[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 282-290. |
37 | Luo Y T, Ye B H, Ye J E, et al. Ca2+ and SO42- accelerate the reduction of Cr(Ⅵ) by Penicillium oxalicum SL2[J]. Journal of Hazardous Materials, 2020, 382: 121072. |
38 | Eswaramoorthy S, Poulain S, Hienerwadel R, et al. Crystal structure of ChrR—a quinone reductase with the capacity to reduce chromate[J]. PLoS One, 2012, 7(4): e36017. |
39 | Robins K J, Hooks D O, Rehm B H, et al. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium[J]. PLoS One, 2013, 8(3): e59200. |
40 | Shi X, Dalal N S. Generation of hydroxyl radical by chromate in biologically relevant systems: role of Cr(V) complexes versus tetraperoxochromate(V)[J]. Environ Health Perspect, 1994, 102(): 231-236. |
41 | Park C H, Gonzalez C F, Ackerley D F, et al. Molecular engineering of soluble bacterial proteins with chromate reductase activity[C]//Hinchee R E, Porta A, Pellei M. Proceedings of the 1st International Conference on Remediation of Contaminated Sediments. Venice, Italy: Battelle Press, 2002: 103-111. |
42 | 夏险, 李明顺, 武士娟, 等. 微生物铬转化和抗性机制与生物修复研究进展[J]. 微生物学通报, 2017, 44(7): 1668-1675. |
Xia X, Li M S, Wu S J, et al. Research progress in microbial chromium-transformation and resistance and bioremediation[J]. Microbiology China, 2017, 44(7): 1668-1675. | |
43 | Kumar V, Dwivedi S K. Hexavalent chromium stress response, reduction capability and bioremediation potential of Trichoderma sp. isolated from electroplating wastewater[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109734. |
44 | Nakatsu C H, Barabote R, Thompson S, et al. Complete genome sequence of Arthrobacter sp. strain FB24[J]. Standards in Genomic Sciences, 2013, 9(1): 106-116. |
45 | Shaw D R, Dussan J. Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and efflux pumps in Lysinibacillus sphaericus OT4b.31[J]. International Biodeterioration & Biodegradation, 2018, 127: 46-61. |
46 | Reyes-Gallegos R I, Ramírez-Díaz M I, Cervantes C. Chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400[J]. World Journal of Microbiology and Biotechnology, 2016, 32(3): 1-5. |
47 | 周思敏. Serratia sp.S2中ChrA1和ChrB基因的功能及抗铬(Ⅵ)机制研究[D]. 重庆: 重庆医科大学, 2018. |
Zhou S M. Chromium resistance characteristics of chromium (Ⅵ) resistance genes ChrA1 and ChrB in Serratia sp.S2[D]. Chongqing: Chongqing Medical University, 2018. | |
48 | He Y, Dong L L, Zhou S M, et al. Chromium resistance characteristics of Cr(Ⅵ) resistance genes ChrA and ChrB in Serratia sp. S2[J]. Ecotoxicology and Environmental Safety, 2018, 157: 417-423. |
49 | Flores-Alvarez L J, Corrales-Escobosa A R, Cortés-Penagos C, et al. The Neurospora crassa chr-1 gene is up-regulated by chromate and its encoded CHR-1 protein causes chromate sensitivity and chromium accumulation[J]. Current Genetics, 2012, 58(5/6): 281-290. |
50 | Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(Ⅲ) oxide during dissimilatory Fe(Ⅲ) reduction by Geothrix fermentans[J]. Appl. Environ. Microbiol., 2002, 68(5): 2294-2299. |
51 | Long B B, Ye J E, Ye Z, et al. Cr(Ⅵ) removal by Penicillium oxalicum SL2: reduction with acidic metabolites and form transformation in the mycelium[J]. Chemosphere, 2020, 253: 126731. |
52 | Shi L, Xue J W, Liu B H, et al. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp., are involved in the efficient removal of hexavalent chromium from waste water[J]. Ecotoxicology and Environmental Safety, 2018, 161: 430-436. |
53 | Li H, Huang S B, Zhang Y Q. Cr(Ⅵ) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals[J]. Journal of Microbiology, 2016, 54(9): 602-610. |
54 | Sarangi A, Krishnan C. Comparison of in vitro Cr(Ⅵ) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil[J]. Bioresource Technology, 2008, 99(10): 4130-4137. |
55 | Rahman Z, Singh V P. Cr(Ⅵ) reduction by Enterobacter sp. DU17 isolated from the tannery waste dump site and characterization of the bacterium and the Cr(Ⅵ) reductase[J]. International Biodeterioration & Biodegradation, 2014, 91: 97-103. |
56 | Volland S, Bayer E, Baumgartner V, et al. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions[J]. Journal of Plant Physiology, 2014, 171(2): 154-163. |
57 | Xu W H, Jian H, Liu Y G, et al. Bioreduction of chromate by an isolated Bacillus anthracis Cr-4 with soluble Cr(Ⅲ) product[J]. Water, Air, & Soil Pollution, 2015, 226(3): 1-9. |
58 | Zhong L, Lai C Y, Shi L D, et al. Nitrate effects on chromate reduction in a methane-based biofilm[J]. Water Research, 2017, 115: 130-137. |
59 | An Q, Deng S M, Zhao B, et al. Simultaneous denitrification and hexavalent chromium removal by a newly isolated Stenotrophomonas maltophilia strain W26 under aerobic conditions[J]. Environmental Chemistry, 2021, 18(1): 20. |
60 | Wang G Y, Zhang B G, Li S, et al. Simultaneous microbial reduction of vanadium (Ⅴ) and chromium (Ⅵ) by Shewanella loihica PV-4[J]. Bioresource Technology, 2017, 227: 353-358. |
61 | Ge S, Ge S C. Simultaneous Cr(Ⅵ) reduction and Zn(Ⅱ) biosorption by Stenotrophomonas sp. and constitutive expression of related genes[J]. Biotechnology Letters, 2016, 38(5): 877-884. |
62 | Yin Y J, Li D, Wang Y Q, et al. Concurrent removal of Mn(Ⅱ) and Cr(Ⅵ) by Achromobacter sp. TY3-4[J]. Geomicrobiology Journal, 2019, 36(4): 317-325. |
63 | Bachate S P, Nandre V S, Ghatpande N S, et al. Simultaneous reduction of Cr(Ⅵ) and oxidation of As(Ⅲ) by Bacillus firmus TE7 isolated from tannery effluent[J]. Chemosphere, 2013, 90(8): 2273-2278. |
64 | Mishra A, Malik A. Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus[J]. Water Research, 2012, 46(16): 4991-4998. |
65 | Yu X, Jiang Y M, Huang H Y, et al. Simultaneous aerobic denitrification and Cr(Ⅵ) reduction by Pseudomonas brassicacearum LZ-4 in wastewater[J]. Bioresource Technology, 2016, 221: 121-129. |
66 | An Q, Deng S M, Xu J, et al. Simultaneous reduction of nitrate and Cr(Ⅵ) by Pseudomonas aeruginosa strain G12 in wastewater[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110001. |
67 | Garg S K, Tripathi M, Singh S K, et al. Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups[J]. Environmental Science and Pollution Research, 2013, 20(4): 2288-2304. |
68 | Xu W H, Duan G F, Liu Y G, et al. Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9[J]. Biodegradation, 2018, 29(6): 605-616. |
69 | Huang H Y, Wu K J, Khan A, et al. A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium[J]. Bioresource Technology, 2016, 207: 370-378. |
70 | Gupta A, Balomajumder C. Simultaneous removal of Cr(Ⅵ) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass[J]. Journal of Water Process Engineering, 2015, 6: 1-10. |
71 | Ji J, Kulshreshtha S, Kakade A, et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater[J]. International Biodeterioration & Biodegradation, 2020, 150: 104939. |
72 | Agarry S E, Aremu M O, Aworanti O A. Kinetic modelling and half-life study on bioremediation of soil co-contaminated with lubricating motor oil and lead using different bioremediation strategies[J]. Soil and Sediment Contamination: an International Journal, 2013, 22(7): 800-816. |
73 | Ibarrolaza A, Coppotelli B M, del Panno M T, et al. Application of the knowledge-based approach to strain selection for a bioaugmentation process of phenanthrene- and Cr(Ⅵ)-contaminated soil[J]. Journal of Applied Microbiology, 2011, 111(1): 26-35. |
[1] | Haijie XUE, Ying WANG, Chun LI. Microbial synthesis and transformation of plant-derived natural products [J]. CIESC Journal, 2019, 70(10): 3825-3835. |
[2] | Zishuai WANG,Yaoqiang WANG,Gang XIAO,Haijia SU. Photocatalytic reduction of Cr(Ⅵ) by magnetic nanomaterial Fe3O4@TiO2 under visible light [J]. CIESC Journal, 2019, 70(10): 4062-4071. |
[3] | TANG Cunduo, SHI Hongling, HE Zihan, DING Pengju, JIAO Zhujin, KAN Yunchao, YAO Lunguang. Green biosynthesis of phenylglyoxylic acid by biotransformation using recombinant Escherichia coli whole cells [J]. CIESC Journal, 2018, 69(6): 2627-2631. |
[4] | WANG Liang, TIAN Dan, LIU Anqi, ZHAO Bin, MA Shushuang, LI Junjing, ZHANG Zhaohui, HUI Xu. Preparation of graphene oxide@MIL-101 composite and its performance in Cr(Ⅵ) removal from aqueous solution [J]. CIESC Journal, 2017, 68(5): 2105-2111. |
[5] | LI Yueqi, HU Jingfang, ZOU Xiaoping, GAO Guowei. Graphene nanomaterial based electrochemical sensor for Cr(Ⅵ) detection in water [J]. CIESC Journal, 2017, 68(12): 4816-4823. |
[6] | ZHANG Yingxin, ZHOU Tao, MAO Juan, WU Xiaohui, YUAN Zhen. Efficient removal of Cr(Ⅵ) by thermal-modified layered double hydroxides (LDHs): adsorption behaviors, effect parameters and comparison with original LDHs [J]. , 2015, 66(S1): 228-236. |
[7] | ZHAO Yujia, ZHANG Genlin, ZHOU Xiaohong, LI Chun. Intelligent and fine regulation of microbial cell factory based on riboswitches [J]. CIESC Journal, 2015, 66(10): 3811-2819. |
[8] | FU Minjie1,NIE Yao1,MU Xiaoqing1,XU Yan 1,2,XIAO Rong3. A novel isoleucine dioxygenase and its expression in recombinant Escherichia coli for synthesis of 4-hydroxyisoleucine [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 3037-3044. |
[9] | YANG Zhenxing,TAO Zhicheng,HE Yucai,WANG Liqun,ZHANG Yue,XING Zhen,GONG Lei,PAN Xuehe. Selective oxidation resolution of racemic phenyl methyl sulfoxide with Rhodococcus sp. CCZU10-1 [J]. Chemical Industry and Engineering Progree, 2014, 33(10): 2744-2747. |
[10] | LI Lansong, YANG Yongzhen, JIA Husheng, YANG Liqing, CAO Qiufen, LIU Xuguang. Isolation and Cu2+ biosorption of metal-tolerant bacterium [J]. CIESC Journal, 2013, 64(9): 3381-3389. |
[11] | ZHU Wenhui, WANG Xingrun, DONG Liangfei, WANG Qi, HE Jie. Characteristics of removing Cr(Ⅵ)of Fe-Cu bimetal PRB coated by sodium alginate [J]. CIESC Journal, 2013, 64(9): 3373-3380. |
[12] | ZHANG Jinli, SUN Daohua, JING Xiaolian, HUANG Jiale, ZHENG Yanmei, LI Qingbiao. Thermodynamic and kinetic characteristics of Au(Ⅲ) biosorption onto Aspergillus niger [J]. CIESC Journal, 2013, 64(4): 1283-1292. |
[13] | YANG Yushan1,DONG Faqin1,LUO Shunzhong1,ZHANG Wei1. Biosorption of Sr2+ by immobilized Saccharomyces cerevisiae [J]. Chemical Industry and Engineering Progree, 2012, 31(03): 639-642. |
[14] | CHEN Bingmei, XU Xiaoping, HOU Zhiguo, LI Zhongqin, RUAN Wenbing. Identification and Mutagenesis of a New Isolated Strain Bacillus sp. B26 for Producing(R)-α-Hydroxyphenylacetic Acid [J]. , 2011, 19(4): 636-643. |
[15] | LI Jia, CHEN Enzan, SU Haijia, TAN Tianwei. Biosorption of Pb2+ with Modified Soybean Hulls as Absorbent [J]. , 2011, 19(2): 334-339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||