CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 184-193.DOI: 10.11949/0438-1157.20201565
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
KUANG Yiwu1(),SUN Lijie2,WANG Wen1(
),ZHUAN Rui2,ZHANG Liang2
Received:
2020-11-02
Revised:
2021-01-15
Online:
2021-06-20
Published:
2021-06-20
Contact:
WANG Wen
通讯作者:
王文
作者简介:
匡以武(1990—),男,博士,博士后,基金资助:
CLC Number:
KUANG Yiwu, SUN Lijie, WANG Wen, ZHUAN Rui, ZHANG Liang. Numerical investigation of hydrogen flow boiling based on two-fluid model[J]. CIESC Journal, 2021, 72(S1): 184-193.
匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
No. | 管径/mm | 长度/mm | 饱和压力/kPa | Reynolds数 | 壁面热通量/ (W/m2) |
---|---|---|---|---|---|
1 | 6.25 | 152 | 161.6 | 220000~330000 | 32900~67900 |
2 | 6.25 | 152 | 222.2 | 560000~660000 | 67200~129300 |
Table 1 Hydrogen flow boiling conditions 1[1]
No. | 管径/mm | 长度/mm | 饱和压力/kPa | Reynolds数 | 壁面热通量/ (W/m2) |
---|---|---|---|---|---|
1 | 6.25 | 152 | 161.6 | 220000~330000 | 32900~67900 |
2 | 6.25 | 152 | 222.2 | 560000~660000 | 67200~129300 |
No. | 管径/mm | 长度/mm | 入口/饱和温度/K | 流速/ (m/s) | 壁面热通量/(W/m2) |
---|---|---|---|---|---|
1.1 | 5.95 | 100 | 29/29 | 1.33 | 16300~58800 |
1.2 | 5.95 | 100 | 29/29 | 4.59 | 19850~93100 |
1.3 | 5.95 | 100 | 29/29 | 8.65 | 21100~101000 |
2.1 | 5.95 | 100 | 24/29 | 1.55 | 39000~91700 |
2.2 | 5.95 | 100 | 24/29 | 4.58 | 58900~150200 |
2.3 | 5.95 | 100 | 24/29 | 12.1 | 47500~259200 |
3.1 | 5.95 | 100 | 21/29 | 1.55 | 53200~102700 |
3.2 | 5.95 | 100 | 21/29 | 4.72 | 96600~182600 |
3.3 | 5.95 | 100 | 21/29 | 12.9 | 184500~317800 |
Table 2 Hydrogen flow boiling conditions 2[2]
No. | 管径/mm | 长度/mm | 入口/饱和温度/K | 流速/ (m/s) | 壁面热通量/(W/m2) |
---|---|---|---|---|---|
1.1 | 5.95 | 100 | 29/29 | 1.33 | 16300~58800 |
1.2 | 5.95 | 100 | 29/29 | 4.59 | 19850~93100 |
1.3 | 5.95 | 100 | 29/29 | 8.65 | 21100~101000 |
2.1 | 5.95 | 100 | 24/29 | 1.55 | 39000~91700 |
2.2 | 5.95 | 100 | 24/29 | 4.58 | 58900~150200 |
2.3 | 5.95 | 100 | 24/29 | 12.1 | 47500~259200 |
3.1 | 5.95 | 100 | 21/29 | 1.55 | 53200~102700 |
3.2 | 5.95 | 100 | 21/29 | 4.72 | 96600~182600 |
3.3 | 5.95 | 100 | 21/29 | 12.9 | 184500~317800 |
1 | Walters H H. Single-tube heat transfer tests with liquid hydrogen [C]// Advances in Cryogenic Engineering. Proceedings of the 1960 Cryogenic Engineering Conference. University of Colorado and National Bureau of Standards Boulder, Colorado, 1961: 509-516. |
2 | Shirai Y, Tatsumoto H, Shiotsu M, et al. Forced flow boiling heat transfer of liquid hydrogen for superconductor cooling [J]. Cryogenics, 2011, 51(6): 295-299. |
3 | Hartwig J, Styborski J, McQuillen J, et al. Liquid hydrogen line chilldown experiments at high Reynolds numbers. Optimal chilldown methods [J]. International Journal of Heat and Mass Transfer, 2019, 137: 703-713. |
4 | 王磊, 朱康, 马原, 等. 常重力及微重力下液氢膜态沸腾换热预测[J]. 航空动力学报, 2017, 32(8): 1835-1843. |
Wang L, Zhu K, Ma Y, et al. Heat transfer prediction on film boiling of liquid hydrogen under normal gravity and microgravity environments [J]. Journal of Aerospace Power, 2017, 32(8): 1835-1843. | |
5 | Mercado M, Wong N, Hartwig J. Assessment of two-phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe heating experiments [J]. International Journal of Heat and Mass Transfer, 2019, 133: 295-315. |
6 | 李祥东, 汪荣顺, 黄荣国, 等. 垂直圆管内液氮流动沸腾的理论模型及数值模拟[J]. 化工学报, 2006, 57(3): 491-497. |
Li X D, Wang R S, Huang R G, et al. Modelling and numerical simulation of boiling flow of liquid nitrogen in vertical tube [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(3): 491-497. | |
7 | 邵雪锋, 李祥东, 汪荣顺. 竖直环形通道内液氮流动沸腾的数值模拟[J]. 化学工程, 2011, 39(10): 82-86, 95. |
Shao X F, Li X D, Wang R S. Numerical simulation of liquid nitrogen boiling flow in vertical annular pipe [J]. Chemical Engineering (China), 2011, 39(10): 82-86, 95. | |
8 | 吴舒琴, 李亦健, 魏健健, 等. 基于RPI沸腾模型的液氮池内核态沸腾过程模拟与分析[J]. 低温工程, 2018, (5): 27-32. |
Wu S Q, Li Y J, Wei J J, et al. Numerical simulation and analysis of nucleate pool boiling process of liquid nitrogen based on RPI boiling model [J]. Cryogenics, 2018, (5): 27-32. | |
9 | 田野, 黄伟, 王海松, 等. 竖直加热通道内气泡脱离直径预测模型[J]. 中国科技论文, 2018, 13(23): 2654-2657. |
Tian Y, Huang W, Wang H S, et al. Bubble departure diameter predicted model in vertical boiling system [J]. China Sciencepaper, 2018, 13(23): 2654-2657. | |
10 | Kurul N, Podowski M Z. On the modeling of multidimensional effects in boiling channels [C]// Proceedings of the 27th National Heat Transfer Conference. Minneapolis, Minnesota, USA, 1991. |
11 | Mikic B B, Rohsenow W M. A new correlation of pool-boiling data including the effect of heating surface characteristics [J]. Journal of Heat Transfer, 1969, 91(2): 245-250. |
12 | Lemmert M, Chawla J M. Influence of flow velocity on surface boiling heat transfer coefficient [EB/OL]. 1977. |
13 | Kirichenko I A, Dolgoi M L, Levchenko N M, et al. The boiling of cryogenic liquids [EB/OL]. 1976. |
14 | Du J Y, Zhao C R, Bo H L. Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling [J]. International Journal of Heat and Mass Transfer, 2018, 127: 796-805. |
15 | Cole R. A photographic study of pool boiling in the region of the critical heat flux [J]. AIChE Journal, 1960, 6(4): 533-538. |
16 | 高旭, 王学会, 雷刚, 等. 微重力流动沸腾气泡脱离机制[J]. 低温工程, 2015, (2): 7-11, 27. |
Gao X, Wang X H, Lei G, et al. Bubble departure mechanism in microgravity flow boiling [J]. Cryogenics, 2015, (2): 7-11, 27. | |
17 | Bland M E, Bailey C A, Davey G. Boiling from metal surfaces immersed in liquid nitrogen and liquid hydrogen [J]. Cryogenics, 1973, 13(11): 651-657. |
18 | Ranz W E, Marshall W R J. Evaporation from drops (Ⅱ) [J]. Chemical Engineering Progress, 1952, 48(173): 173-180. |
19 | Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubble flow [J]. International Journal of Multiphase Flow, 1975, 2(1): 79-95. |
20 | Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simple shear flows [J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. |
21 | Ishii M. Two-fluid model for two-phase flow [J]. Multiphase Science and Technology, 1990, 5(1/2/3/4): 1-63. |
22 | Ünal H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 mN/m2 [J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. |
23 | Kocamustafaogullari G, Ishii M. Interfacial area and nucleation site density in boiling systems [J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[8] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[9] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[10] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[11] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[12] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[13] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[14] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[15] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 394
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 584
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||