CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5686-5695.DOI: 10.11949/0438-1157.20210787
• Process system engineering • Previous Articles Next Articles
Chunbo CHEN(),Xionglin LUO,Lin SUN()
Received:
2021-06-10
Revised:
2021-08-02
Online:
2021-11-12
Published:
2021-11-05
Contact:
Lin SUN
通讯作者:
孙琳
作者简介:
陈春波(1994—),男,博士研究生,基金资助:
CLC Number:
Chunbo CHEN, Xionglin LUO, Lin SUN. Time-varying analysis of feasible region and full-cycle operating optimization in multi-effect distillation seawater desalination system[J]. CIESC Journal, 2021, 72(11): 5686-5695.
陈春波, 罗雄麟, 孙琳. 多效蒸发海水淡化系统可行域时变分析与全周期操作优化[J]. 化工学报, 2021, 72(11): 5686-5695.
Add to citation manager EndNote|Ris|BibTeX
固定条件 | 值 | 设计参数 | 值 |
---|---|---|---|
海水流动方式 | 平行-交叉 | 每效进料流量/(kg?s-1) | 31.59 |
海水温度/℃ | 30 | 效间温差/℃ | 3 |
海水含盐量/(g?kg-1) | 30 | 预热器温升/℃ | 4 |
冷凝器出口温度/℃ | 35 | TVC引射流量/(kg?s-1) | 4.50 |
驱动蒸汽压力/kPa | 500 | 加热蒸汽流量/(kg?s-1) | 7.38 |
驱动蒸汽温度/℃ | 151.8 | 淡水产量/(kg?s-1) | 75.81 |
造水比 | 10.27 |
Table 1 Specifications of the MED-TVC system[25]
固定条件 | 值 | 设计参数 | 值 |
---|---|---|---|
海水流动方式 | 平行-交叉 | 每效进料流量/(kg?s-1) | 31.59 |
海水温度/℃ | 30 | 效间温差/℃ | 3 |
海水含盐量/(g?kg-1) | 30 | 预热器温升/℃ | 4 |
冷凝器出口温度/℃ | 35 | TVC引射流量/(kg?s-1) | 4.50 |
驱动蒸汽压力/kPa | 500 | 加热蒸汽流量/(kg?s-1) | 7.38 |
驱动蒸汽温度/℃ | 151.8 | 淡水产量/(kg?s-1) | 75.81 |
造水比 | 10.27 |
效数 | Ff/(kg?s-1) | P/kPa | ΔTp/℃ | Fent/kg?s-1 | Fmot/(kg?s-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | |
1 | 31.59 | 19.84 | 27.34 | 26.33 | 4 | 2.78 | 4.43 | 4.06 | 7.38 | 6.45 |
2 | 31.59 | 18.48 | 23.92 | 23.39 | 4 | 2.83 | ||||
3 | 31.59 | 18.77 | 20.86 | 20.69 | 4 | 2.87 | ||||
4 | 31.59 | 19.66 | 18.15 | 18.22 | 4 | 3.06 | ||||
5 | 31.59 | 21.97 | 15.74 | 15.97 | 4 | 3.80 | ||||
6 | 31.59 | 23.34 | 13.61 | 13.83 | 4 | 5.45 | ||||
7 | 31.59 | 18.06 | 11.73 | 11.84 | 4 | 8.03 | ||||
8 | 31.59 | 19.58 | 10.07 | 10.12 | — | — |
Table 2 Comparison of operating conditions between steady-state optimization and design
效数 | Ff/(kg?s-1) | P/kPa | ΔTp/℃ | Fent/kg?s-1 | Fmot/(kg?s-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | |
1 | 31.59 | 19.84 | 27.34 | 26.33 | 4 | 2.78 | 4.43 | 4.06 | 7.38 | 6.45 |
2 | 31.59 | 18.48 | 23.92 | 23.39 | 4 | 2.83 | ||||
3 | 31.59 | 18.77 | 20.86 | 20.69 | 4 | 2.87 | ||||
4 | 31.59 | 19.66 | 18.15 | 18.22 | 4 | 3.06 | ||||
5 | 31.59 | 21.97 | 15.74 | 15.97 | 4 | 3.80 | ||||
6 | 31.59 | 23.34 | 13.61 | 13.83 | 4 | 5.45 | ||||
7 | 31.59 | 18.06 | 11.73 | 11.84 | 4 | 8.03 | ||||
8 | 31.59 | 19.58 | 10.07 | 10.12 | — | — |
参数 | 设计条件 | 稳态优化 | 全周期优化 |
---|---|---|---|
淡水产量/(kg?s-1) | 75.81 | [75.81, 66.76] | 75.81 |
驱动蒸汽流量/(kg?s-1) | [7.38, 10.71] | [6.45, 20.00] | [6.59, 6.91] |
GOR | [10.30, 7.08] | [11.75, 3.34] | [11.51, 10.98] |
总蒸汽量/108 kg | 5.30 | 10.40 | 4.26 |
Table 3 Comparison of design condition, steady-state optimization and full cycle optimization for full cycle operating results
参数 | 设计条件 | 稳态优化 | 全周期优化 |
---|---|---|---|
淡水产量/(kg?s-1) | 75.81 | [75.81, 66.76] | 75.81 |
驱动蒸汽流量/(kg?s-1) | [7.38, 10.71] | [6.45, 20.00] | [6.59, 6.91] |
GOR | [10.30, 7.08] | [11.75, 3.34] | [11.51, 10.98] |
总蒸汽量/108 kg | 5.30 | 10.40 | 4.26 |
1 | 郭妮娜. 浅析我国水资源现状、问题及治理对策[J]. 安徽农学通报, 2018, 24(10): 79-81. |
Guo N N. The current situation, problems and countermeasures of water resources in China[J]. Anhui Agricultural Science Bulletin, 2018, 24(10): 79-81. | |
2 | 闫佳伟, 王红瑞, 朱中凡, 等. 我国海水淡化若干问题及对策[J]. 南水北调与水利科技, 2020, 18(2): 199-210. |
Yan J W, Wang H R, Zhu Z F, et al. Relevant issues and countermeasures of seawater desalination in China[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(2): 199-210. | |
3 | 2018—2019中国海水淡化年度报告[R]. 北京: 中国水利企业协会脱盐分会, 2020. |
China Desalination Yearbook of 2018—2019[R]. Beijing: Desalination Branch of China Water enterprise Confederation, 2020. | |
4 | 阮国岭. 用海水淡化保障高质量发展[J]. 民主与科学, 2020(1): 35-37. |
Ruan G L. Seawater desalination guarantees high quality development[J]. Democracy & Science, 2020(1): 35-37. | |
5 | Ophir A, Lokiec F. Advanced MED process for most economical sea water desalination[J]. Desalination, 2005, 182(1/2/3): 187-198. |
6 | Mazini M T, Yazdizadeh A, Ramezani M H. Dynamic modeling of multi-effect desalination with thermal vapor compressor plant[J]. Desalination, 2014, 353: 98-108. |
7 | 王锐浩, 黄鹏飞, 王小军, 等. 海水淡化成本构成与成本控制问题研究[J]. 盐科学与化工, 2020, 49(7): 19-23. |
Wang R H, Huang P F, Wang X J, et al. Study on cost composition and cost control of desalination[J]. Journal of Salt Science and Chemical Industry, 2020, 49(7): 19-23. | |
8 | Jamil M A, Zubair S M. Effect of feed flow arrangement and number of evaporators on the performance of multi-effect mechanical vapor compression desalination systems[J]. Desalination, 2018, 429: 76-87. |
9 | Khalid K A, Antar M A, Khalifa A, et al. Allocation of thermal vapor compressor in multi effect desalination systems with different feed configurations[J]. Desalination, 2018, 426: 164-173. |
10 | Carballo J A, Bonilla J, Roca L, et al. Optimal operating conditions analysis for a multi-effect distillation plant according to energetic and exergetic criteria[J]. Desalination, 2018, 435: 70-76. |
11 | Janghorban Esfahani I, Ataei A, Shetty K V, et al. Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system[J]. Desalination, 2012, 292: 87-104. |
12 | Gholinejad M, Bakhtiari A, Bidi M. Effects of tracking modes on the performance of a solar MED plant[J]. Desalination, 2016, 380: 29-42. |
13 | Tian L, Tang Y P, Wang Y Q. Economic evaluation of seawater desalination for a nuclear heating reactor with multi-effect distillation[J]. Desalination, 2005, 180(1/2/3): 53-61. |
14 | Curto D, Franzitta V, Guercio A. A review of the water desalination technologies[J]. Applied Sciences, 2021, 11(2): 670. |
15 | Christ A, Rahimi B, Regenauer-Lieb K, et al. Techno-economic analysis of geothermal desalination using Hot Sedimentary Aquifers: a pre-feasibility study for Western Australia[J]. Desalination, 2017, 404: 167-181. |
16 | Ng K C, Thu K, Oh S J, et al. Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the MED and AD cycles[J]. Desalination, 2015, 356: 255-270. |
17 | Khoshgoftar Manesh M H, Ghalami H, Amidpour M, et al. Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization[J]. Desalination, 2013, 316: 42-52. |
18 | Mabrouk A N, Fath H E S. Technoeconomic study of a novel integrated thermal MSF-MED desalination technology[J]. Desalination, 2015, 371: 115-125. |
19 | Al-Jaroudi S S, Ul-Hamid A, Al-Matar J A. Prevention of failure in a distillation unit exhibiting extensive scale formation[J]. Desalination, 2010, 260(1/2/3): 119-128. |
20 | Budhiraja P, Fares A A. Studies of scale formation and optimization of antiscalant dosing in multi-effect thermal desalination units[J]. Desalination, 2008, 220(1/2/3): 313-325. |
21 | 孙雪, 吴礼云, 李强, 等. 海水淡化产量降低原因分析及提产实践[J]. 水处理技术, 2018, 44(5): 123-126. |
Sun X, Wu L Y, Li Q, et al. Reasons analysis of seawater desalination production reduction and practice of increasing production[J]. Technology of Water Treatment, 2018, 44(5): 123-126. | |
22 | Albagawi J. Fouling analysis and its mitigation in heat exchangers[D]. King Fahd University of Petroleum and Minerals (Saudi Arabia), 2002. |
23 | Tahir F, Atif M, Antar M A. The effect of fouling on performance and design aspects of multiple-effect desalination systems[M]//Recent Progress in Desalination, Environmental and Marine Outfall Systems. Cham: Springer International Publishing, 2015: 35-52. |
24 | Chen C B, Sun L, Liu D J, et al. Impact of cumulative fouling characteristics on full-cycle operation optimisation of multi-effect distillation desalination system[J].Chem. Eng. Trans.,2019, 76: 649-654. |
25 | Chen C B, Luo X L, Wang T Y, et al. Minimum motive steam consumption on full cycle optimization with cumulative fouling consideration for MED-TVC desalination system[J]. Desalination, 2021, 507: 115017. |
26 | Cipollina A, Agnello M, Piacentino A, et al. A dynamic model for MED-TVC transient operation[J]. Desalination, 2017, 413: 234-257. |
27 | Druetta P, Aguirre P, Mussati S. Optimization of multi-effect evaporation desalination plants[J]. Desalination, 2013, 311: 1-15. |
28 | 徐志明, 张仲彬, 郭闻州, 等. 微粒和析晶混合污垢模型[J]. 工程热物理学报, 2006, 27(S2): 81-84. |
Xu Z M, Zhang Z B, Guo W Z, et al. A theoretical model of composite fouling of particulate and crystallization[J]. Journal of Engineering Thermophysics, 2006, 27(S2): 81-84. | |
29 | 张海春, 王海增, 阮国岭. 热法海水淡化阻垢及清洗技术研究现状[J]. 中国给水排水, 2008, 24(16): 12-16. |
Zhang H C, Wang H Z, Ruan G L. Research status of scale prevention and cleaning techniques in thermal seawater desalination[J]. China Water & Wastewater, 2008, 24(16): 12-16. | |
30 | Shahzad M W, Burhan M, Ang L, et al. Energy-water-environment nexus underpinning future desalination sustainability[J]. Desalination, 2017, 413: 52-64. |
31 | 阮国岭. 海水淡化工程设计[M]. 北京: 中国电力出版社, 2013. |
Ruan G L. Design of Seawater Desalination Engineering [M]. Beijing: China Electric Power Press, 2013. | |
32 | Xu L, Wang S Y, Wang S C, et al. Studies on heat-transfer film coefficients inside a horizontal tube in falling film evaporators[J]. Desalination, 2004, 166: 215-222. |
[1] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
[2] | Jianfei ZHANG, Jiajiang LIN, Xionglin LUO, Feng XU. Modeling analysis for product distribution control and optimization of heavy oil FCCU [J]. CIESC Journal, 2022, 73(3): 1232-1245. |
[3] | Tianyuan WANG, Chunbo CHEN, Lin SUN, Xionglin LUO. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling [J]. CIESC Journal, 2022, 73(2): 759-769. |
[4] | Dehong WANG, Lin SUN, Xionglin LUO. Full-cycle slow-lift limited optimization analysis of multi-effect distillation heat transfer temperature difference in seawater desalination system [J]. CIESC Journal, 2022, 73(12): 5469-5482. |
[5] | XU Jianwei, LIANG Yingzong, LUO Xianglong, CHEN Jianyong, YANG Zhi, CHEN Ying. Integration and analysis of PRICO-membrane distillation seawater desalination system [J]. CIESC Journal, 2021, 72(S1): 437-444. |
[6] | Cheng CHEN, Xin CHEN, Feng XU, Bin WU, Yuanyuan LI, Gui LU. Matter-energy-water coupling mechanism and optimization for zero discharge of desulfurization wastewater from coal-fired units [J]. CIESC Journal, 2021, 72(11): 5800-5809. |
[7] | Ming TAN, Wenguang WANG, Xiaodong ZHANG, Hongwu ZHAO, Yang ZHANG, Xingtao YANG. Forward-osmosis strategy and chemical cleaning of seawater desalination reverse osmosis membranes [J]. CIESC Journal, 2020, 71(S2): 306-313. |
[8] | Wenguang WANG, Ming TAN, Xiaohan SUN, Xingtao YANG, Xiaodong ZHANG, Yang ZHANG, Hongwu ZHAO. Ultrafiltration membrane cleaning technology and mechanism based on seawater desalination pilot equipment [J]. CIESC Journal, 2020, 71(S2): 289-296. |
[9] | Siqi FENG, Xionglin LUO. Online estimation of switching time for a class of optimization-control mode switch of economic model predictive control [J]. CIESC Journal, 2020, 71(S2): 225-240. |
[10] | ZHANG Jia, LUO Xionglin, XU Feng, XU Jun. Influence of feed forward variables on feasible region of model predictive control [J]. CIESC Journal, 2016, 67(9): 3776-3783. |
[11] | ZHANG Suojiang, ZHANG Xiangping, NIE Yi, BAO Di, DONG Haifeng, LÜ Xingmei. Green process system engineering [J]. CIESC Journal, 2016, 67(1): 41-53. |
[12] | WANG Pan, ZHAO Jie, CHEN Huayan, LÜ Xiaolong. Heat and mass transfer in osmotic distillation [J]. CIESC Journal, 2014, 65(8): 2889-2895. |
[13] | LI Defang, SUO Hansheng. Accelerate the process of smart plant, promote ecological civilization construction [J]. CIESC Journal, 2014, 65(2): 374-380. |
[14] | XIE Lixin1,2,3,ZHOU Wenmeng1,2,3,CHEN Fei1,2,3. Study on heat-transfer performance of horizontal tube falling film evaporator [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2878-2881. |
[15] | QI Chunhua, XING Yulei, KANG Quan, XU Ke, FENG Houjun. Pilot test of a 30 t·d-1 desalination device with multi-effect and operated at low temperature by evaporating seawater [J]. CIESC Journal, 2013, 64(8): 3023-3030. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||