CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 933-940.DOI: 10.11949/0438-1157.20210565
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Lixia WANG1,2(),Zhaojie BI1,2,Miaolei SHI1,2,Chen WANG1,2,Dongfang WANG1,2(),Qian LI2
Received:
2021-08-22
Revised:
2021-10-09
Online:
2022-02-18
Published:
2022-02-05
Contact:
Dongfang WANG
王利霞1,2(),毕肇杰1,2,史淼磊1,2,王晨1,2,王东方1,2(),李倩2
通讯作者:
王东方
作者简介:
王利霞(1969—),女,博士,教授,基金资助:
CLC Number:
Lixia WANG, Zhaojie BI, Miaolei SHI, Chen WANG, Dongfang WANG, Qian LI. Effect of blending mode and ratio of UHMWPE/PEG on the entanglement behavior and properties of UHMWPE[J]. CIESC Journal, 2022, 73(2): 933-940.
王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940.
Add to citation manager EndNote|Ris|BibTeX
密度/(kg/m3) | 拉伸模量/MPa | 屈服应力/MPa | 断裂 应变/% | 断裂应力/MPa |
---|---|---|---|---|
930 | 680 | 20 | >450 | >41 |
Table 1 Performance of UHMWPE
密度/(kg/m3) | 拉伸模量/MPa | 屈服应力/MPa | 断裂 应变/% | 断裂应力/MPa |
---|---|---|---|---|
930 | 680 | 20 | >450 | >41 |
样品名称 | E′/MPa | Me | Ve/(mol/m3) |
---|---|---|---|
纯UHMWPE | 2.491 | 3735 | 231 |
JH1PEG | 2.238 | 4158 | 207 |
JH3PEG | 1.895 | 4910 | 176 |
JH5PEG | 1.941 | 4793 | 180 |
JH7PEG | 1.766 | 5268 | 164 |
GH1PEG | 2.361 | 3941 | 219 |
GH3PEG | 1.963 | 4740 | 182 |
GH5PEG | 1.849 | 5032 | 171 |
JC5PEG | 1.826 | 5096 | 169 |
Table 2 The average molecular weight and entanglement density of blend samples
样品名称 | E′/MPa | Me | Ve/(mol/m3) |
---|---|---|---|
纯UHMWPE | 2.491 | 3735 | 231 |
JH1PEG | 2.238 | 4158 | 207 |
JH3PEG | 1.895 | 4910 | 176 |
JH5PEG | 1.941 | 4793 | 180 |
JH7PEG | 1.766 | 5268 | 164 |
GH1PEG | 2.361 | 3941 | 219 |
GH3PEG | 1.963 | 4740 | 182 |
GH5PEG | 1.849 | 5032 | 171 |
JC5PEG | 1.826 | 5096 | 169 |
样品名称 | 拉伸强度/MPa | 断裂应变/% | 韧性/(J/m | 屈服强度/MPa |
---|---|---|---|---|
纯UHMWPE | 44.00 | 487.80 | 134.90 | 21.10 |
JH1PEG | 37.75 | 405.70 | 103.29 | 19.80 |
JH3PEG | 35.72 | 397.10 | 96.80 | 20.13 |
JH5PEG | 33.43 | 383.50 | 87.84 | 18.40 |
GH5PEG | 26.90 | 403.00 | 83.36 | 18.20 |
JC5PEG | 24.18 | 429.20 | 82.59 | 18.20 |
Table 3 Mechanical property parameters of blend samples
样品名称 | 拉伸强度/MPa | 断裂应变/% | 韧性/(J/m | 屈服强度/MPa |
---|---|---|---|---|
纯UHMWPE | 44.00 | 487.80 | 134.90 | 21.10 |
JH1PEG | 37.75 | 405.70 | 103.29 | 19.80 |
JH3PEG | 35.72 | 397.10 | 96.80 | 20.13 |
JH5PEG | 33.43 | 383.50 | 87.84 | 18.40 |
GH5PEG | 26.90 | 403.00 | 83.36 | 18.20 |
JC5PEG | 24.18 | 429.20 | 82.59 | 18.20 |
样品名称 | 熔融温度/℃ | 相对结晶度/% |
---|---|---|
纯UHMWPE | 134.95 | 46.60 |
JH1PEG | 134.39 | 48.05 |
JH3PEG | 133.53 | 50.99 |
JH5PEG | 134.46 | 48.05 |
GH5PEG | 132.94 | 49.25 |
JC5PEG | 134.57 | 48.66 |
Table 4 Melting temperature and relative crystallinity of blend samples
样品名称 | 熔融温度/℃ | 相对结晶度/% |
---|---|---|
纯UHMWPE | 134.95 | 46.60 |
JH1PEG | 134.39 | 48.05 |
JH3PEG | 133.53 | 50.99 |
JH5PEG | 134.46 | 48.05 |
GH5PEG | 132.94 | 49.25 |
JC5PEG | 134.57 | 48.66 |
1 | Xie M J, Liu X L, Li H L. Influence of poly(ethylene glycol)-containing additives on extrusion of ultrahigh molecular weight polyethylene/polypropylene blend[J]. Journal of Applied Polymer Science, 2006, 100(2): 1282-1288. |
2 | Xie M J, Li H L. Mechanical properties of an ultrahigh-molecular-weight polyethylene/polypropylene blend containing poly(ethylene glycol) additives[J]. Journal of Applied Polymer Science, 2008, 108(5): 3148-3153. |
3 | Xie M J, Li H L. Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: effect of blending with polypropylene and poly(ethylene glycol)[J]. European Polymer Journal, 2007, 43(8): 3480-3487. |
4 | Chaudhuri K, Poddar S, Pol H, et al. The effect of processing conditions on the rheological properties of blends of ultra high molecular weight polyethylene with high-density polyethylene[J]. Polymer Engineering & Science, 2019, 59(4): 821-829. |
5 | Wood W J, Maguire R G, Zhong W H. Improved wear and mechanical properties of UHMWPE-carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process[J]. Composites Part B: Engineering, 2011, 42(3): 584-591. |
6 | González J, Rosales C, González M, et al. Rheological and mechanical properties of blends of LDPE with high contents of UHMWPE wastes[J]. Journal of Applied Polymer Science, 2017, 134(26): 44996. |
7 | Lee E M, Oh Y S, Ha H S, et al. Rheological properties of UHMWPE/iPP blends[J]. Polymers for Advanced Technologies, 2009, 20(12): 1121-1126. |
8 | Unger T, Klocke L, Herrington K, et al. Investigation of the rheological and mechanical behavior of polypropylene/ultra-high molecular weight polyethylene compounds related to new online process control[J]. Polymer Testing, 2020, 86: 106442. |
9 | Huang Y F, Xu J Z, Li J S, et al. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene[J]. Biomaterials, 2014, 35(25): 6687-6697. |
10 | Lim K L K, Ishak Z A M, Ishiaku U S, et al. High-density polyethylene/ultra high-molecular-weight polyethylene blend(Ⅰ): The processing, thermal, and mechanical properties[J]. Journal of Applied Polymer Science, 2005, 97(1): 413-425. |
11 | 卢陈, 王柯. 双辊混炼实现低缠结超高分子量聚乙烯熔融加工及高性能化[J]. 塑料工业, 2020, 48(10): 117-121. |
Lu C, Wang K. Melt processing and performance-enhanced of ultra high molecular weight polyethylene via calendar rolling[J]. China Plastics Industry, 2020, 48(10): 117-121. | |
12 | 梁雄, 伍晓宇, 李兵, 等. 超声粉末模压成型超高分子量聚乙烯微塑件的两相结构[J]. 高分子材料科学与工程, 2014, 30(12): 103-107, 112. |
Liang X, Wu X Y, Li B, et al. Two-phase structure of micro ultrasonic powder molding ultra-high molecular weight polyethylene parts[J]. Polymer Materials Science & Engineering, 2014, 30(12): 103-107, 112. | |
13 | Rastogi S, Yao Y F, Ronca S, et al. Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route[J]. Macromolecules, 2011, 44(14): 5558-5568. |
14 | Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene[J]. Biomaterials, 2001, 22(4): 371-401. |
15 | Qiao X Y, Na M Y, Gao P, et al. The crystallization and rheological behaviors of the ultrahigh molecular weight polyethylene swollen by petrolatum[J]. Polymer Testing, 2019, 80: 106115. |
16 | Liu S L, Wang F, Chen J Y, et al. Ultra-high molecular weight polyethylene with reduced fusion defects and improved mechanical properties by liquid paraffin[J]. International Journal of Polymer Analysis and Characterization, 2015, 20(2): 138-149. |
17 | Cheung S Y, Wen W J, Gao P. Disentanglement and micropore structure of UHMWPE in an athermal solvent[J]. Polymer Engineering & Science, 2015, 55(5): 1177-1186. |
18 | Li Y C, He H, Ma Y B, et al. Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2(1): 51-60. |
19 | 董澎, 王柯, 李军方, 等. 超高分子量聚乙烯烧结制品的链缠结调控及其对性能影响[J]. 高分子学报, 2020, 51(1): 117-124. |
Dong P, Wang K, Li J F, et al. Chain entanglement regulation of sintered ultrahigh molecular weight polyethylene and its effect on properties[J]. Acta Polymerica Sinica, 2020, 51(1): 117-124. | |
20 | Galetz M C, Blaβ T, Ruckdäschel H, et al. Carbon nanofibre-reinforced ultrahigh molecular weight polyethylene for tribological applications[J]. Journal of Applied Polymer Science, 2007, 104(6): 4173-4181. |
21 | 张海琛. 基于拉伸流变的UHMWPE熔融挤出过程及其结构与性能研究[D]. 广州: 华南理工大学, 2016. |
Zhang H C. Study on the melt extrusion process of UHMWPE and its morphology and properties under elongational flow[D]. Guangzhou: South China University of Technology, 2016. | |
22 | 刘铮. 不同流场作用下超高分子量聚乙烯分子量变化机制及构效关系研究[D]. 福州: 福建师范大学, 2019. |
Liu Z. Study on molecular weight change mechanism and structure-activity relationship of ultra-high molecular weight polyethylene under different flow fields[D]. Fuzhou: Fujian Normal University, 2019. | |
23 | 何振强. 超高分子量聚乙烯增强改性及加工研究[D]. 北京: 北京化工大学, 2012. |
He Z Q. Reinforced ultra high molecular weight polyethylene and the influnce of processing condtions on its properties[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
24 | Zhang J B, Cole P J, Nagpal U, et al. Direct correlation between adhesion promotion and coupling reaction at immiscible polymer-polymer interfaces[J]. The Journal of Adhesion, 2006, 82(9): 887-902. |
25 | Cole P J, Cook R F, Macosko C W. Adhesion between immiscible polymers correlated with interfacial entanglements[J]. Macromolecules, 2003, 36(8): 2808-2815. |
26 | Oslanec R, Brown H R. Entanglement density at the interface between two immiscible polymers[J]. Macromolecules, 2003, 36(15): 5839-5844. |
27 | James S P, Lee K R, Beauregard G P, et al. Clinical wear of 63 ultrahigh molecular weight polyethylene acetabular components: effect of starting resin and forming method[J]. Journal of Biomedical Materials Research, 1999, 48(3): 374-384. |
28 | Yilmaz G, Ellingham T, Turng L S. Injection and injection compression molding of ultra-high-molecular weight polyethylene powder[J]. Polymer Engineering & Science, 2019, 59(s2): E170-E179. |
29 | 谢美菊. 超高分子量聚乙烯的加工性能改进和结构与性能的研究[D]. 成都: 四川大学, 2006. |
Xie M J. Studies on processability improvement of ultra high molecular weight polyethylene and influence on its structure and properties[D]. Chengdu: Sichuan University, 2006. | |
30 | 俞欣. 超高分子量聚乙烯结晶行为及其结构性能关系的研究[D]. 上海: 华东理工大学, 2016. |
Yu X. Study on the crystallization and structure-property relationship of ultra high molecular weight polyethylene[D]. Shanghai: East China University of Science and Technology, 2016. | |
31 | 王小俊. 超高分子量聚乙烯的流变行为及其在材料加工中的应用[D]. 广州: 华南理工大学, 2010. |
Wang X J. Rheological behavior of ultra high molecular weight polyethylene and its application in molding processing[D]. Guangzhou: South China University of Technology, 2010. | |
32 | Truss R W, Han K S, Wallace J F, et al. Cold compaction molding and sintering of ultra high molecular weight polyethylene[J]. Polymer Engineering & Science, 1980, 20(11): 747-755. |
33 | Ahmad M, Wahit M U, Kadir M R A, et al. Influence of processing aids and hydroxyapatite as fillers on flow behaviour and mechanical properties of ultra high molecular weight polyethylene/high density polyethylene composites[J]. Key Engineering Materials, 2011, 471/472: 827-832. |
[1] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[2] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[3] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[4] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
[5] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[6] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[7] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[8] | HAO Gangwei, LIU Ye, YAN Gang, YU Jianlin. Performance optimization of a frost-free air cooled refrigerator with series-parallel refrigeration cycle [J]. CIESC Journal, 2021, 72(S1): 178-183. |
[9] | JI Rongbin, CHEN Ting, PENG Chaohua, XIA Long, CHEN Guorong, LUO Wei'ang, ZENG Birong, XU Yiting, YUAN Conghui, DAI Lizong. Flame retardant epoxy resin composites modified with organophosphorus and boron hybrid molecules [J]. CIESC Journal, 2021, 72(7): 3856-3868. |
[10] | CUI Jin,SHI Chuan,ZHAO Jinbao. Research progress on the effect of mechanical pressure on the performance of lithium batteries [J]. CIESC Journal, 2021, 72(7): 3511-3523. |
[11] | YU Chengming, PENG Xudong, JIANG Jinbo, MA Yi, WANG Yuming. Investigation on accelerated aging behavior and mechanism of fluoroether rubber under wide temperature range [J]. CIESC Journal, 2021, 72(6): 3399-3410. |
[12] | YANG Lin, MENG Xiaomi, YAO Lu, LAI Yuguo, JIANG Wenju. Combined low-temperature flue gas denitrification and desulfurization over the natural mineral blending modified activated coke [J]. CIESC Journal, 2021, 72(4): 2241-2248. |
[13] | ZHOU Ye, XIAO Huixia, WANG Yifei, YU Guangsuo. Study on improving slurryability of lignite based on coal blending and surface modification [J]. CIESC Journal, 2021, 72(4): 2233-2240. |
[14] | YUE Hangbo, ZHENG Pingxuan, ZHENG Yuru, KUANG Liuyin, ZHANG Yin, LI Liangjun, GUO Jianwei. Processing, interfaces and properties of cottonseed protein/sisal fiber green composites [J]. CIESC Journal, 2021, 72(3): 1751-1760. |
[15] | ZHANG Kuangsheng, TANG Meirong, XUE Xiaojia, LI Kai, SHAO Yan, ZHOU Jian, YUE Chongchong, LI Zhuangzhuang, PAN Pengju. Crystallization and degradation behavior of poly(lactic acid)/poly(ethylene glycol) blends [J]. CIESC Journal, 2021, 72(2): 1181-1190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||