CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3856-3868.DOI: 10.11949/0438-1157.20201832
• Material science and engineering, nanotechnology • Previous Articles Next Articles
JI Rongbin(),CHEN Ting,PENG Chaohua,XIA Long,CHEN Guorong,LUO Wei'ang,ZENG Birong,XU Yiting,YUAN Conghui,DAI Lizong()
Received:
2020-12-16
Revised:
2021-04-02
Online:
2021-07-05
Published:
2021-07-05
Contact:
DAI Lizong
纪荣彬(),陈婷,彭超华,夏龙,陈国荣,罗伟昂,曾碧榕,许一婷,袁丛辉,戴李宗()
通讯作者:
戴李宗
作者简介:
纪荣彬(1995—),男,硕士研究生,基金资助:
CLC Number:
JI Rongbin, CHEN Ting, PENG Chaohua, XIA Long, CHEN Guorong, LUO Wei'ang, ZENG Birong, XU Yiting, YUAN Conghui, DAI Lizong. Flame retardant epoxy resin composites modified with organophosphorus and boron hybrid molecules[J]. CIESC Journal, 2021, 72(7): 3856-3868.
纪荣彬, 陈婷, 彭超华, 夏龙, 陈国荣, 罗伟昂, 曾碧榕, 许一婷, 袁丛辉, 戴李宗. 有机磷/硼杂化小分子阻燃改性环氧树脂[J]. 化工学报, 2021, 72(7): 3856-3868.
Add to citation manager EndNote|Ris|BibTeX
Samples | Nitrogen | Air | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
To/℃ | Tmax1/℃ | Tmax2/℃ | Tmax3/℃ | Wre/% | To/℃ | Tmax1/℃ | Tmax2/℃ | Tmax3/℃ | Wre/% | |
DPC-1B | 120.80 | 134.40 | 288.31 | 432.73 | 11.53 | 116.75 | 143.36 | 290.43 | 400.11 | 19.62 |
PDS-2B | 100.12 | 113.21 | 392.53 | 515.16 | 36.55 | 93.29 | 122.25 | 398.43 | 518.77 | 31.13 |
Table 1 Thermal decomposition data of DPC-1B and PDS-2B
Samples | Nitrogen | Air | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
To/℃ | Tmax1/℃ | Tmax2/℃ | Tmax3/℃ | Wre/% | To/℃ | Tmax1/℃ | Tmax2/℃ | Tmax3/℃ | Wre/% | |
DPC-1B | 120.80 | 134.40 | 288.31 | 432.73 | 11.53 | 116.75 | 143.36 | 290.43 | 400.11 | 19.62 |
PDS-2B | 100.12 | 113.21 | 392.53 | 515.16 | 36.55 | 93.29 | 122.25 | 398.43 | 518.77 | 31.13 |
Samples | Nitrogen | ||
---|---|---|---|
To/℃ | Tmax/℃ | Wre/% | |
EP | 355.3 | 392.65 | 12.66 |
EP/1% DPC-1B | 352.4 | 387.89 | 15.28 |
EP/2% DPC-1B | 347.0 | 390.84 | 16.12 |
EP/1% PDS-2B | 343.6 | 388.95 | 16.66 |
EP/2% PDS-2B | 340.9 | 389.88 | 19.27 |
Table 2 TGA data of cured epoxy resin
Samples | Nitrogen | ||
---|---|---|---|
To/℃ | Tmax/℃ | Wre/% | |
EP | 355.3 | 392.65 | 12.66 |
EP/1% DPC-1B | 352.4 | 387.89 | 15.28 |
EP/2% DPC-1B | 347.0 | 390.84 | 16.12 |
EP/1% PDS-2B | 343.6 | 388.95 | 16.66 |
EP/2% PDS-2B | 340.9 | 389.88 | 19.27 |
Samples | LOI/% | UL-94 | |||
---|---|---|---|---|---|
T1/s | T2/s | Dripping | Rating | ||
EP | 25.7 | >30 | — | Yes | NR |
EP/2% DDP | 28.9 | 17 | 11 | No | V-1 |
EP/2% HPB | 26.6 | 25 | 14 | No | V-1 |
EP/2% PB | 30.1 | 12 | 6 | No | V-1 |
EP/1% DPC-1B | 31.1 | 6 | 1 | No | V-0 |
EP/2% DPC-1B | 31.8 | 3 | 1 | No | V-0 |
EP/1% PDS-2B | 31.0 | 11 | 3 | No | V-1 |
EP/2% PDS-2B | 31.5 | 3 | 3 | No | V-0 |
Table 3 LOI and UL-94 vertical burning data of cured epoxy resin
Samples | LOI/% | UL-94 | |||
---|---|---|---|---|---|
T1/s | T2/s | Dripping | Rating | ||
EP | 25.7 | >30 | — | Yes | NR |
EP/2% DDP | 28.9 | 17 | 11 | No | V-1 |
EP/2% HPB | 26.6 | 25 | 14 | No | V-1 |
EP/2% PB | 30.1 | 12 | 6 | No | V-1 |
EP/1% DPC-1B | 31.1 | 6 | 1 | No | V-0 |
EP/2% DPC-1B | 31.8 | 3 | 1 | No | V-0 |
EP/1% PDS-2B | 31.0 | 11 | 3 | No | V-1 |
EP/2% PDS-2B | 31.5 | 3 | 3 | No | V-0 |
Samples | TTI /s | PHRR/(kW/m2) | THR/(MJ/m2) | FIGRA/(kW/(m2·s)) | SPR/(m2/s) | TSP/m2 | Residue/%(mass) |
---|---|---|---|---|---|---|---|
EP | 101 | 1042.5 | 128.5 | 5.75 | 0.16 | 20.7 | 10.3 |
EP/1% DPC-1B | 99 | 908.3 | 117.4 | 4.88 | 0.17 | 22.4 | 17.0 |
EP/2% DPC-1B | 101 | 766.5 | 103.7 | 4.16 | 0.20 | 21.5 | 24.2 |
EP/1% PDS-2B | 100 | 958.7 | 110.8 | 5.26 | 0.16 | 19.6 | 20.0 |
EP/2% PDS-2B | 99 | 815.1 | 106.7 | 4.40 | 0.16 | 19.2 | 23.6 |
Table 4 Cone calorimeter tests data of cured epoxy resin
Samples | TTI /s | PHRR/(kW/m2) | THR/(MJ/m2) | FIGRA/(kW/(m2·s)) | SPR/(m2/s) | TSP/m2 | Residue/%(mass) |
---|---|---|---|---|---|---|---|
EP | 101 | 1042.5 | 128.5 | 5.75 | 0.16 | 20.7 | 10.3 |
EP/1% DPC-1B | 99 | 908.3 | 117.4 | 4.88 | 0.17 | 22.4 | 17.0 |
EP/2% DPC-1B | 101 | 766.5 | 103.7 | 4.16 | 0.20 | 21.5 | 24.2 |
EP/1% PDS-2B | 100 | 958.7 | 110.8 | 5.26 | 0.16 | 19.6 | 20.0 |
EP/2% PDS-2B | 99 | 815.1 | 106.7 | 4.40 | 0.16 | 19.2 | 23.6 |
Fig.10 SEM images of char residue internal and exterior obtained from cone calorimeter tests for EP, EP/1% DPC-1B, EP/2% DPC-1B, EP/1% PDS-2B and EP/2% PDS-2B
Samples | Flexural strength/MPa | Elasticity modulus/(N/mm2) |
---|---|---|
EP | 87.39 | 2045.9 |
EP/1% DPC-1B | 98.13 | 2230.1 |
EP/2% DPC-1B | 103.45 | 2328.4 |
EP/1% PDS-2B | 114.80 | 2357.5 |
EP/2% PDS-2B | 126.34 | 2391.3 |
Table 5 Three-point bending test data of cured epoxy resin
Samples | Flexural strength/MPa | Elasticity modulus/(N/mm2) |
---|---|---|
EP | 87.39 | 2045.9 |
EP/1% DPC-1B | 98.13 | 2230.1 |
EP/2% DPC-1B | 103.45 | 2328.4 |
EP/1% PDS-2B | 114.80 | 2357.5 |
EP/2% PDS-2B | 126.34 | 2391.3 |
1 | 蔡坤鹏, 黄淼铭, 刘文涛, 等. 无卤阻燃剂合成及应用研究进展[J]. 工程塑料应用, 2021, 49(1): 152-156. |
Cai K P, Huang M M, Liu W T, et al. Research progress on synthesis and application of halogen-free flame retardants[J]. Engineering Plastics Application, 2021, 49(1): 152-156. | |
2 | Liu Q Y, Wang D H, Li Z K, et al. Recent developments in the flame-retardant system of epoxy resin[J]. Materials, 2020, 13(9): 2145. |
3 | Singh H, Jain A K. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review[J]. Journal of Applied Polymer Science, 2009, 111(2): 1115-1143. |
4 | Irvine D J, McCluskey J A, Robinson I M. Fire hazards and some common polymers[J]. Polymer Degradation and Stability, 2000, 67(3): 383-396. |
5 | Hamciuc C, Vlad-Bubulac T, Serbezeanu D, et al. Environmentally friendly fire-resistant epoxy resins based on a new oligophosphonate with high flame retardant efficiency[J]. RSC Advances, 2016, 6(27): 22764-22776. |
6 | Wang N, Gao H Y, Zhang J, et al. Phytic acid intercalated graphene oxide for anticorrosive reinforcement of waterborne epoxy resin coating[J]. Polymers, 2019, 11(12): E1950. |
7 | Jang J B, Kim T H, Kim T, et al. Modified epoxy resin synthesis from phosphorus-containing polyol and physical changes studies in the synthesized products[J]. Polymers, 2019, 11(12): E2116. |
8 | 李绒绒, 陈伟. 阻燃剂在环氧树脂体系中的应用[J]. 热固性树脂, 2021, 36(1): 66-70. |
Li R R, Chen W. Application of flame retardants in epoxy resin system[J]. Thermosetting Resin, 2021, 36(1): 66-70. | |
9 | 南巡, 蒋文革, 周宇, 等. 一种潜伏性无卤阻燃中温固化环氧树脂体系[J]. 宇航材料工艺, 2020, 50(1): 44-48. |
Nan X, Jiang W G, Zhou Y, et al. A non-halogen flame-retardant latent epoxy resin system curing at medium temperature[J]. Aerospace Materials & Technology, 2020, 50(1): 44-48. | |
10 | Naderi M, Hoseinabadi M, Najafi M, et al. Investigation of the mechanical, thermal, and anticorrosion properties of epoxy nanocomposite coatings: effect of synthetic hardener and nanoporous graphene[J]. Journal of Applied Polymer Science, 2018, 135(17): 46201. |
11 | Kireev V V, Bilichenko Y V, Borisov R S, et al. Synthesis of bisphenol A based phosphazene-containing epoxy resin with reduced viscosity[J]. Polymers, 2019, 11(12): 1914. |
12 | Movahedifar E, Vahabi H, Saeb M R, et al. Flame retardant epoxy composites on the road of innovation: an analysis with flame retardancy index for future development[J]. Molecules, 2019, 24(21): 3964. |
13 | Vahabi H, Laoutid F, Movahedifar E, et al. Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by flame retardancy index[J]. Polymers for Advanced Technologies, 2019, 30(8): 2056-2066. |
14 | Wang X, Kalali E N, Wang D Y. Renewable cardanol-based surfactant modified layered double hydroxide as a flame retardant for epoxy resin[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3281-3290. |
15 | Zotti A, Borriello A, Ricciardi M, et al. Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy[J]. Composites Part B: Engineering, 2015, 73: 139-148. |
16 | Shree Meenakshi K, Pradeep Jaya Sudhan E, Ananda Kumar S, et al. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications[J]. Progress in Organic Coatings, 2011, 72(3): 402-409. |
17 | Qian L J, Ye L J, Qiu Y, et al. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin[J]. Polymer, 2011, 52(24): 5486-5493. |
18 | Wagner J, Deglmann P, Fuchs S, et al. A flame retardant synergism of organic disulfides and phosphorous compounds[J]. Polymer Degradation and Stability, 2016, 129: 63-76. |
19 | Zhao W, Liu J P, Peng H, et al. Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins[J]. Polymer Degradation and Stability, 2015, 118: 120-129. |
20 | Liu Y L, Chou C I. The effect of silicon sources on the mechanism of phosphorus-silicon synergism of flame retardation of epoxy resins[J]. Polymer Degradation and Stability, 2005, 90(3): 515-522. |
21 | Shi Y C, Wang G J. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating[J]. Applied Surface Science, 2016, 385: 453-463. |
22 | Kalali E N, Wang X, Wang D Y. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties[J]. Journal of Materials Chemistry A, 2015, 3(13): 6819-6826. |
23 | 田时开. 纳米SiO2/石墨烯-阻燃环氧树脂复合材料的制备及性能研究[J]. 功能材料, 2020, 51(6): 6052-6056. |
Tian S K. Preparation and properties of nano-SiO2/grapheme flame retardant epoxy resin composites[J]. Journal of Functional Materials, 2020, 51(6): 6052-6056. | |
24 | Zhang T, Liu W S, Wang M X, et al. Synergistic effect of an aromatic boronic acid derivative and magnesium hydroxide on the flame retardancy of epoxy resin[J]. Polymer Degradation and Stability, 2016, 130: 257-263. |
25 | 贾园, 张鹏, 刘振, 等. 阻燃高分子材料的开发及其应用研究进展[J]. 中国塑料, 2019, 33(10): 120-127. |
Jia Y, Zhang P, Liu Z, et al. Development, application and research progress in flame-retardant polymeric materials[J]. China Plastics, 2019, 33(10): 120-127. | |
26 | 宋昆朋, 王银杰, 刘吉平, 等. 磷腈化合物在阻燃聚合物领域的研究进展[J]. 中国塑料, 2021, 35(2): 107-118. |
Song K P, Wang Y J, Liu J P, et al. Research progress in applications of phosphazene compounds in flame-retardant polymers field[J]. China Plastics, 2021, 35(2): 107-118. | |
27 | Jang B N, Wilkie C A. The effects of triphenylphosphate and recorcinolbis(diphenylphosphate) on the thermal degradation of polycarbonate in air[J]. Thermochimica Acta, 2005, 433(1/2): 1-12. |
28 | Pawlowski K H, Schartel B. Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymer International, 2007, 56(11): 1404-1414. |
29 | Cote A P. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
30 | Jian R K, Ai Y F, Xia L, et al. Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins[J]. Journal of Hazardous Materials, 2019, 371: 529-539. |
31 | Kandola B K, Krishnan L, Ebdon J R, et al. Structure-property relationships in structural glass fibre reinforced composites from unsaturated polyester and inherently fire retardant phenolic resin matrix blends[J]. Composites Part B: Engineering, 2020, 182: 107607. |
32 | Morgan A B, Jurs J L, Tour J M. Synthesis, flame-retardancy testing, and preliminary mechanism studies of nonhalogenated aromatic boronic acids: a new class of condensed-phase polymer flame-retardant additives for acrylonitrile-butadiene-styrene and polycarbonate[J]. Journal of Applied Polymer Science, 2000, 76(8): 1257-1268. |
33 | Liu X, Zhou Y, Peng H, et al. Catalyzing charring effect of solid acid boron phosphate on dipentaerythritol during the thermal degradation and combustion[J]. Polymer Degradation and Stability, 2015, 119: 242-250. |
[1] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[2] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[3] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[4] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[5] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[6] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[7] | Yulong HUANG, Fan LYU, Junjie QIU, Hua ZHANG, Pinjing HE. Physicochemical properties and VOCs molecular characteristics of liquid digestate from anaerobic digestion of putrescible waste [J]. CIESC Journal, 2023, 74(3): 1275-1285. |
[8] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[9] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[10] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[11] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
[12] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[13] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[14] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[15] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||