CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1181-1190.DOI: 10.11949/0438-1157.20200323
• Material science and engineering, nanotechnology • Previous Articles Next Articles
ZHANG Kuangsheng1(),TANG Meirong1,XUE Xiaojia1,LI Kai1,SHAO Yan2,ZHOU Jian2,YUE Chongchong2,LI Zhuangzhuang2,PAN Pengju2(
)
Received:
2020-03-27
Revised:
2020-10-12
Online:
2021-02-05
Published:
2021-02-05
Contact:
PAN Pengju
张矿生1(),唐梅荣1,薛小佳1,李楷1,邵炎2,周健2,岳冲冲2,李壮壮2,潘鹏举2(
)
通讯作者:
潘鹏举
作者简介:
张矿生(1976—),男,硕士,高级工程师,基金资助:
CLC Number:
ZHANG Kuangsheng, TANG Meirong, XUE Xiaojia, LI Kai, SHAO Yan, ZHOU Jian, YUE Chongchong, LI Zhuangzhuang, PAN Pengju. Crystallization and degradation behavior of poly(lactic acid)/poly(ethylene glycol) blends[J]. CIESC Journal, 2021, 72(2): 1181-1190.
张矿生, 唐梅荣, 薛小佳, 李楷, 邵炎, 周健, 岳冲冲, 李壮壮, 潘鹏举. 聚乳酸/聚乙二醇共混物的结晶与降解行为[J]. 化工学报, 2021, 72(2): 1181-1190.
Sample | Tc,PEG /℃ | Tc,PLLA/℃ | ΔHc,PLLA/(J/g) | Tm,PEG /℃ | Tm,PLLA /℃ | ΔHm,PLLA/(J/g) | Xc,PLLA/% |
---|---|---|---|---|---|---|---|
PLLA | — | — | — | — | 174.6 | 29.7 | 31.8 |
PLLA90PEG10 | — | 93.6 | 43.8 | 45.1 | 175.2 | 44.1 | 47.4 |
PLLA80PEG20 | — | 95.6 | 41.4 | 51.7 | 173.7 | 55.4 | 59.5 |
PLLA70PEG30 | 24.5 | 95.7 | 51.3 | 57.2 | 173.6 | 57.6 | 61.8 |
PLLA60PEG40 | 34.6 | 109.6 | 51.8 | 59.2 | 172.8 | 61.2 | 65.6 |
PLLA50PEG50 | 33.5 | 107.1 | 53.8 | 59.3 | 171.6 | 62.6 | 67.2 |
PEG | 35.8 | — | — | 63.9 | — | — | — |
Table 1 Thermal parameters of PLLA, PEG and PLLA/PEG blends
Sample | Tc,PEG /℃ | Tc,PLLA/℃ | ΔHc,PLLA/(J/g) | Tm,PEG /℃ | Tm,PLLA /℃ | ΔHm,PLLA/(J/g) | Xc,PLLA/% |
---|---|---|---|---|---|---|---|
PLLA | — | — | — | — | 174.6 | 29.7 | 31.8 |
PLLA90PEG10 | — | 93.6 | 43.8 | 45.1 | 175.2 | 44.1 | 47.4 |
PLLA80PEG20 | — | 95.6 | 41.4 | 51.7 | 173.7 | 55.4 | 59.5 |
PLLA70PEG30 | 24.5 | 95.7 | 51.3 | 57.2 | 173.6 | 57.6 | 61.8 |
PLLA60PEG40 | 34.6 | 109.6 | 51.8 | 59.2 | 172.8 | 61.2 | 65.6 |
PLLA50PEG50 | 33.5 | 107.1 | 53.8 | 59.3 | 171.6 | 62.6 | 67.2 |
PEG | 35.8 | — | — | 63.9 | — | — | — |
Sample | t1/2/min | k/min-n | n |
---|---|---|---|
PLLA | 8.5 | 0.01 | 2.08 |
PLLA90PEG10 | 2.6 | 0.11 | 1.90 |
PLLA80PEG20 | 2.2 | 0.13 | 2.15 |
PLLA70PEG30 | 2.0 | 0.12 | 2.51 |
PLLA60PEG40 | 1.7 | 0.18 | 2.63 |
PLLA50PEG50 | 0.8 | 1.05 | 2.01 |
Table 2 Kinetic data of PLLA and PLLA/PEG blends during isothermal crystallization at 120℃
Sample | t1/2/min | k/min-n | n |
---|---|---|---|
PLLA | 8.5 | 0.01 | 2.08 |
PLLA90PEG10 | 2.6 | 0.11 | 1.90 |
PLLA80PEG20 | 2.2 | 0.13 | 2.15 |
PLLA70PEG30 | 2.0 | 0.12 | 2.51 |
PLLA60PEG40 | 1.7 | 0.18 | 2.63 |
PLLA50PEG50 | 0.8 | 1.05 | 2.01 |
1 | North E J, Halden R U. Plastics and environmental health: the road ahead[J]. Reviews on Environmental Health, 2013, 28(1): 1-8. |
2 | Iman M, Fathi A, Badr H.Biomedical applications of biodegradable polyesters[J]. Polymers, 2016, 8(1): 1-32. |
3 | Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications[J]. Macromolecular Rapid Communications, 2000, 21(3): 117-132. |
4 | Jandas P J, Mohanty S, Nayak S K. Sustainability, compostability, and specific microbial activity on agricultural mulch films prepared from poly(lactic acid)[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17714-17724. |
5 | Xue S, Zhang Z, Wu G. Application of a novel temporary blocking agent in refracturing[J]. Society of Petroleum Engineers, 2015, SPE-176900-MS. |
6 | Shah A A, Hasan F, Hameed A, et al. Biological degradation of plastics: a comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246-265. |
7 | Rydz J, Sikorska W, Kyulavska M, et al. Polyester-based (bio)degradable polymers as environ-mentally friendly materials for sustainable development[J]. International Journal of Molecular Sciences, 2014, 16(1): 564-596. |
8 | Reddy M M, Vivekanandhan S, Misra M, et al. Biobased plastics and bionanocomposites: current status and future opportunities[J]. Progress in Polymer Science, 2013, 38(10): 1653-1689. |
9 | Slomkowski S, Sosnowski S, Gadzinowski M. Polyesters from lactides and ε-caprolactone. Dispersion polymerization versus polymerization in solution[J]. Polymer Degradation & Stability, 1998, 59(1): 153-160. |
10 | Huang J C, Shetty A S, Wang M. Biodegradable plastics: a review[J]. Advances in Polymer Technology, 1990, 10(1): 23-30. |
11 | Bhagat V, Becker M L. Degradable adhesives for surgery and tissue engineering[J]. Biomacromolecules, 2017, 18(10): 3009-3039. |
12 | Liu L, Li S, Garreau H, et al. Selective enzymatic degradations of poly(l-lactide) and poly(epsilon-caprolactone) blend films[J]. Biomacromolecules, 2000, 1(3): 350-359. |
13 | Elsawy M A, Kim K H, Park J W, et al. Hydrolytic degradation of polylactic acid (PLA) and its composites[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1346-1352. |
14 | Lasprilla A J R, Martinez G A R, Lunelli B H, et al. Poly-lactic acid synthesis for application in biomedical devices: a review[J]. Biotechnology Advances, 2012, 30: 321-328. |
15 | Farah S, Anderson D G, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107: 367-392. |
16 | Razavi M, Wang S Q. Why is crystalline poly(lactic acid) brittle at room temperature?[J] Macromolecules, 2019, 52: 5429-5441. |
17 | Rasal R M, Janorkar A V, Hirt D E. Poly(lactic acid) modifications[J]. Progress in Polymer Science, 2010; 35: 338-356. |
18 | Liu G M, Zhang X Q, Wang D J. Tailoring crystallization: towards high‐performance poly(lactic acid)[J]. Advanced Materials, 2014, 26: 6905-6911. |
19 | Pivsa-Art W, Fujii K, Nomura K, et al. The effect of poly (ethylene glycol) as plasticizer in blends of poly (lactic acid) and poly (butylene succinate)[J]. Journal of Applied Polymer Science, 2016, 133(8): 430-444. |
20 | Lai W C, Liau W B, Lin T T. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA[J]. Polymer, 2004, 45: 3073-3080. |
21 | Hu Y, Hu Y S, Topolkaraev V, et al. Aging of poly(lactide)/poly(ethylene glycol) blends(Ⅱ). Poly(lactide) with high stereoregularity[J]. Polymer, 2003, 44: 5711-5720. |
22 | Wang H P, Tong D J, Wang L, et al. A facile strategy for fabricating PCL/PEG block copolymer with excellent enzymatic degradation[J]. Polymer degradation and stability, 2017, 140: 64-73. |
23 | 黄志辉, 包永忠, 潘鹏举. 可逆加成-断裂链转移聚合制备聚氯乙烯-b-聚乙二醇-b-聚氯乙烯共聚物[J]. 化工学报, 2017, 68(6): 2569-2576. |
Huang Z H, Bao Y Z, Pan P J. Synthesis of poly(vinyl chloride)-b-poly(ethylene glycol)-b-poly(vinyl chloride) block copolymers by reversible addition-fragmentation chain transfer polymerizations[J]. CIESC Journal, 2017, 68(6): 2569-2576. | |
24 | Wang Y, Wei X, Duan J, et al. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol)[J]. Chinese Journal of Polymer Science, 2017, 35(3): 386-399. |
25 | Liu Y L, Shao J, Sun J R, et al. Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA[J]. Polymer Degradation and Stability, 2014, 101: 10-17. |
26 | Tacha S, Saelee T, Khotasen W, et al. Stereocomplexation of PLL/PDL-PEG-PDL blends: effects of blend morphology on film toughness[J]. European Polymer Journal, 2015, 69: 308-318. |
27 | Park B S, Song J C, Park D H, et al. PLA/chain‐extended PEG blends with improved ductility[J]. Journal of Applied Polymer Science, 2012, 123(4): 2360-2367. |
28 | Wang B, Hina K, Zou H, et al. Thermal, crystallization, mechanical and decomposition properties of poly (lactic acid) plasticized with poly (ethylene glycol)[J]. Journal of Vinyl and Additive Technology, 2018, 24: E154-E163. |
29 | Pei A, Zhou Q, Berglund L A. Functionalized cellulose nanocrystals as biobased nuclea-tion agents in poly(l-lactide) (PLLA) -crystallization and mechanical property effects[J]. Composites Science and Technology, 2010, 70(5): 815-821. |
30 | Lorenzo A T, Arnal M L, Albuerne J, et al. DSC isothermal polymer crystallization kinetics measurements and the use of the avrami equation to fit the data: guidelines to avoid common problems[J]. Polymer Testing, 2007, 26: 222-231. |
31 | Wang H S, Qiu Z B. Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature[J]. Thermochimica Acta, 2012, 527: 40-46. |
32 | Grizzi I, Garreau H, Li S, et al. Hydrolytic degradation of devices based on poly(DL-lactic acid) size dependence[J]. Biomaterials, 1995, 16: 305-311. |
33 | Wang Y, Pan J Z, Han X X, et al. A phenomenological model for the degradation of biodegradable polymers[J]. Biomaterials, 2008, 29: 3393-3401. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[4] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[5] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[6] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[7] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[8] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[9] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[10] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[11] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[12] | Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation [J]. CIESC Journal, 2022, 73(9): 4062-4069. |
[13] | Xianlun XU, Yang QIAN, Xingwang ZHANG, Lecheng LEI. Study on treating soil contained pyrene by high voltage pulsed dielectric barrier discharge [J]. CIESC Journal, 2022, 73(9): 4025-4033. |
[14] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[15] |
Guoxin SUN, Mengxuan GOU, Cheng ZHOU, Pei CHANG, Gaohong HE, Xiaobin JIANG.
Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||