CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 284-293.DOI: 10.11949/0438-1157.20211009
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Wenfa MAO1(),Sainan ZHENG2,Nianjun LUO2,Jinghong ZHOU1(),Yueqiang CAO1,Xinggui ZHOU1
Received:
2021-07-20
Revised:
2021-11-07
Online:
2022-01-18
Published:
2022-01-05
Contact:
Jinghong ZHOU
毛文发1(),郑赛男2,骆念军2,周静红1(),曹约强1,周兴贵1
通讯作者:
周静红
作者简介:
毛文发(1995—),男,硕士研究生,基金资助:
CLC Number:
Wenfa MAO, Sainan ZHENG, Nianjun LUO, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation and optimization on oxidative coupling reaction of CO to dimethyl oxalate in a tubular fixed bed reactor[J]. CIESC Journal, 2022, 73(1): 284-293.
毛文发, 郑赛男, 骆念军, 周静红, 曹约强, 周兴贵. 列管固定床反应器内CO氧化偶联制草酸二甲酯反应模拟及优化[J]. 化工学报, 2022, 73(1): 284-293.
Add to citation manager EndNote|Ris|BibTeX
指标 | 单管实验数据 | 一维拟均相模型计算结果 | 二维拟均相模型计算结果 |
---|---|---|---|
MN转化率/% | 59.5 | 64.89 | 76.06 |
DMO选择性/% | 95.5 | 89.76 | 87.33 |
DMC选择性/% | 3.0 | 3.60 | 3.64 |
MF选择性/% | 1.5 | 6.64 | 9.03 |
DMO时空产率/(g DMO/(g cat?h)) | 0.55 | 0.56 | 0.64 |
热点温度/K | 408.2 | 405.86 | 414.42 |
Table 1 Comparison of experimental data in single-tubular reactor with one-dimensional and two-dimensional pseudo-homogeneous model results
指标 | 单管实验数据 | 一维拟均相模型计算结果 | 二维拟均相模型计算结果 |
---|---|---|---|
MN转化率/% | 59.5 | 64.89 | 76.06 |
DMO选择性/% | 95.5 | 89.76 | 87.33 |
DMC选择性/% | 3.0 | 3.60 | 3.64 |
MF选择性/% | 1.5 | 6.64 | 9.03 |
DMO时空产率/(g DMO/(g cat?h)) | 0.55 | 0.56 | 0.64 |
热点温度/K | 408.2 | 405.86 | 414.42 |
冷却介质 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
393 | 398.91 | 53.59 | 90.84 | 3.39 | 5.77 |
398 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
403 | 413.86 | 76.50 | 88.50 | 3.80 | 7.70 |
408 | 423.38 | 87.63 | 87.03 | 3.99 | 8.98 |
Table 2 Effect of coolant temperature on hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
冷却介质 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
393 | 398.91 | 53.59 | 90.84 | 3.39 | 5.77 |
398 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
403 | 413.86 | 76.50 | 88.50 | 3.80 | 7.70 |
408 | 423.38 | 87.63 | 87.03 | 3.99 | 8.98 |
空速/h-1 | 压降/kPa | DMO时空产率/ (g DMO/(g cat?h)) | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|---|
1000 | 7.35 | 0.28 | 423.56 | 99.93 | 86.59 | 3.57 | 9.84 |
2000 | 27.81 | 0.47 | 409.20 | 81.60 | 88.90 | 3.52 | 7.58 |
3000 | 65.71 | 0.56 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
4000 | 134.93 | 0.60 | 404.28 | 51.82 | 90.10 | 3.71 | 6.12 |
Table 3 Effect of gas hourly space velocity on pressure drop, hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
空速/h-1 | 压降/kPa | DMO时空产率/ (g DMO/(g cat?h)) | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|---|
1000 | 7.35 | 0.28 | 423.56 | 99.93 | 86.59 | 3.57 | 9.84 |
2000 | 27.81 | 0.47 | 409.20 | 81.60 | 88.90 | 3.52 | 7.58 |
3000 | 65.71 | 0.56 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
4000 | 134.93 | 0.60 | 404.28 | 51.82 | 90.10 | 3.71 | 6.12 |
进口压力/kPa | 压降/kPa | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|
400 | 90.35 | 404.76 | 58.96 | 89.16 | 3.92 | 6.91 |
450 | 65.71 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
500 | 50.91 | 407.03 | 69.87 | 90.20 | 3.35 | 6.44 |
550 | 40.97 | 408.26 | 74.19 | 90.56 | 3.15 | 6.29 |
Table 4 Effect of inlet feed pressure on pressure drop, hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
进口压力/kPa | 压降/kPa | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|
400 | 90.35 | 404.76 | 58.96 | 89.16 | 3.92 | 6.91 |
450 | 65.71 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
500 | 50.91 | 407.03 | 69.87 | 90.20 | 3.35 | 6.44 |
550 | 40.97 | 408.26 | 74.19 | 90.56 | 3.15 | 6.29 |
MN-CO-NO/ %(vol) | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
12-25-4 | 408.88 | 71.53 | 90.42 | 3.55 | 6.03 |
12-25-8 | 405.25 | 62.98 | 89.55 | 3.61 | 6.84 |
12-25-12 | 403.67 | 56.58 | 88.77 | 3.66 | 7.57 |
12-20-8 | 403.53 | 53.41 | 87.36 | 4.67 | 7.97 |
12-10-8 | 400.64 | 31.8 | 77.47 | 9.61 | 12.92 |
Table 5 Effect of reactant composition on hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
MN-CO-NO/ %(vol) | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
12-25-4 | 408.88 | 71.53 | 90.42 | 3.55 | 6.03 |
12-25-8 | 405.25 | 62.98 | 89.55 | 3.61 | 6.84 |
12-25-12 | 403.67 | 56.58 | 88.77 | 3.66 | 7.57 |
12-20-8 | 403.53 | 53.41 | 87.36 | 4.67 | 7.97 |
12-10-8 | 400.64 | 31.8 | 77.47 | 9.61 | 12.92 |
进料 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
390 | 405.62 | 64.52 | 89.79 | 3.59 | 6.61 |
395 | 405.86 | 64.89 | 89.76 | 3.6 | 6.64 |
400 | 406.38 | 65.34 | 89.71 | 3.61 | 6.68 |
405 | 407.64 | 65.9 | 89.64 | 3.63 | 6.72 |
Table 6 Effect of feed gas temperature on hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
进料 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
390 | 405.62 | 64.52 | 89.79 | 3.59 | 6.61 |
395 | 405.86 | 64.89 | 89.76 | 3.6 | 6.64 |
400 | 406.38 | 65.34 | 89.71 | 3.61 | 6.68 |
405 | 407.64 | 65.9 | 89.64 | 3.63 | 6.72 |
1 | Wang Z Q, Xu Z N, Peng S Y, et al. New catalysts for coal to ethylene glycol[J]. Chinese Journal of Chemistry, 2017, 35(6): 759-768. |
2 | Ye R P, Lin L, Wang L C, et al. Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate[J]. ACS Catalysis, 2020, 10(8): 4465-4490. |
3 | 徐京磐. 关注煤制乙二醇产业用新动能促上新台阶[J]. 中氮肥, 2020(2): 1-4. |
Xu J P. Focus on the coal to ethylene glycol industry and promote it to a new level with new kinetic energy[J]. M-Sized Nitrogenous Fertilizer Progress, 2020(2): 1-4. | |
4 | 王永胜. 影响合成气制乙二醇质量关键指标的因素及控制方法[J]. 化肥设计, 2019, 57(4): 28-30, 62. |
Wang Y S. Factors impacting the key quality indicators of syngas-to-EG and controlling measures[J]. Chemical Fertilizer Design, 2019, 57(4): 28-30, 62. | |
5 | 李学强, 郑化安, 张生军, 等. 国内煤制乙二醇现状及发展建议[J]. 洁净煤技术, 2014, 20(6): 92-96. |
Li X Q, Zheng H A, Zhang S J, et al. Development suggestions for coal to ethylene glycol in domestic[J]. Clean Coal Technology, 2014, 20(6): 92-96. | |
6 | 王庆新. 合成气制乙二醇反应器大型化措施[J]. 中氮肥, 2017(4): 1-6. |
Wang Q X. Maximization measures of EG reactor by syngas [J]. M-Sized Nitrogenous Fertilizer Progress, 2017(4): 1-6. | |
7 | 毛彦鹏, 张博, 骆念军, 等. 一种用于CO羰化偶联合成草酸二甲酯的轴径向反应器: 109395667A[P]. 2019-03-01. |
Mao Y P, Zhang B, Luo N J, et al. An axial radial reactor for CO carbonylation coupling to dimethyl oxalate: 109395667A[P]. 2019-03-01. | |
8 | 陈伟建, 王强, 钱胜涛, 等. 一种用于合成气制乙二醇工艺的新型羰化反应器: 204911449U[P]. 2015-12-30. |
Chen W J, Wang Q, Qian S T, et al. A novel carbonylation reactor for ethylene glycol production from syngas: 204911449U[P]. 2015-12-30. | |
9 | 安嘉元, 李瑞江, 朱学栋, 等. 合成气制乙二醇羰化径向反应器床层换热模拟[J]. 化学工程, 2020, 48(8): 57-62. |
An J Y, Li R J, Zhu X D, et al. Simulation of bed heat transfer in radial carbonylation reactor for syngas to ethylene glycol[J]. Chemical Engineering (China), 2020, 48(8): 57-62. | |
10 | 鲁文质. SDMO路线合成乙二醇的模拟研究[D]. 上海: 上海交通大学, 2006. |
Lu W Z. Simulation on ethylene glycol synthesis by super DMO-based technology[D]. Shanghai: Shanghai JiaoTong University, 2006. | |
11 | 谭俊青. CO催化偶联合成草酸二甲酯的机理及动力学研究[D]. 上海: 华东理工大学, 2008. |
Tan J Q. IR study and kinetic research on CO catalytic coupling to dimethyl oxalate[D]. Shanghai: East China University of Science and Technology, 2008. | |
12 | 徐艳, 马新宾, 刘戈, 等. CO偶联制草酸酯合成反应器的动态特性[J].石油化工, 2001,30: 764-767. |
Xu Y, Ma X B, Liu G, et al. Dynamic characteristics of a reactor for CO coupling to oxalate[J]. Petrochemical Technology, 2001,30: 764-767. | |
13 | 徐艳, 马新宾, 许根慧. 草酸二乙酯合成反应器参数敏感性研究[J].石油化工, 2003,32: 835-837. |
Xu Y, Ma X B, Xu H G. Study on parameter sensitivity of diethyl oxalate synthesis reactor[J]. Petrochemical Technology, 2003,32: 835-837. | |
14 | Zhu Y P, Tu S, Luo Z H. Modeling for the catalytic coupling reaction of carbon monoxide to diethyl oxalate in fixed-bed reactors: reactor model and its applications[J]. Chemical Engineering Research and Design, 2012, 90(9): 1361-1371. |
15 | Gao X, Zhu Y P, Luo Z H. CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors[J]. Chemical Engineering Science, 2011, 66(23): 6028-6038. |
16 | 王玮涵, 李振花, 王保伟, 等. 钯催化剂上CO气相催化偶联合成草酸酯的研究[C]//中国工程院化工、冶金与材料工程学部第七届学术会议. 北京: 2010. |
Wang W H, Li Z H, Wang B W, et al. Study on gas phase coupling of CO to oxalate over palladium catalyst[C]// Proceedings of the 7th Academic Conference of the Ministry of Chemical, Metallurgical and Materials Engineering, Chinese Academy of Engineering. Beijing: 2010. | |
17 | Uchiumi S I, Ataka K, Matsuzaki T. Oxidative reactions by a palladium-alkyl nitrite system[J]. Journal of Organometallic Chemistry, 1999, 576(1/2): 279-289. |
18 | 张铁, 王建新, 姜杰. 亚硝酸甲酯物性研究[J]. 安全、健康和环境, 2013, 13(7): 39-40, 56. |
Zhang T, Wang J X, Jiang J. Study on physical nature of methyl nitrite[J]. Safety Health & Environment, 2013, 13(7): 39-40, 56. | |
19 | 毛文发. CO偶联制草酸二甲酯反应动力学及反应器建模[D]. 上海: 华东理工大学, 2021. |
Mao W F. Kinetic study and reactor modeling of CO coupling to dimethyl oxalate[D]. Shanghai: East China University of Science and Technology, 2021. | |
20 | 鲁文质, 滕立华, 肖文德. 固定床反应器合成二甲醚的模拟分析[J]. 天然气化工, 2002, 27(4): 53-61. |
Lu W Z, Teng L H, Xiao W D. Simulation analysis of fixed-bed reactor for dimethyl ether synthesis[J]. Natural Gas Chemical Industry, 2002, 27(4): 53-61. | |
21 | Li C H, Finlayson B A. Heat transfer in packed beds—a reevaluation[J]. Chemical Engineering Science, 1977, 32(9): 1055-1066. |
22 | Rase H F. Fixed-bed Reactor Design and Diagnostics[M]. Boston: Butterworths, 1990. |
23 | Fahien R W, Smith J M. Mass transfer in packed beds[J]. AIChE Journal, 1955, 1(1): 28-37. |
24 | Roemer G, Dranoff J S, Smith J M. Diffusion in packed beds at low flow rates[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(4): 284-287. |
25 | Tsotsas E, Schlünder E U. Some remarks on channelling and on radial dispersion in packed beds[J]. Chemical Engineering Science, 1988, 43(5): 1200-1203. |
26 | Benneker A H, Kronberg A E, Post J W, et al. Axial dispersion in gases flowing through a packed bed at elevated pressures[J]. Chemical Engineering Science, 1996, 51(10): 2099-2108. |
27 | 陈甘棠. 化学反应工程[M]. 3版. 北京: 化学工业出版社, 2007. |
Chen G T. Chemical Reaction Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2007. | |
28 | Ergun S. Fluid flow through packed column[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94. |
29 | Ried R C, Prausnitz J M, Sherwood J K. The Properties of Gas and Liquid[M]. 4th ed. New York: Mcgraw-Hill Companies, 1987. |
30 | 尹平. 一氧化碳偶联制草酸二甲酯及碳酸二甲酯体系的热力学分析[J]. 天然气化工(C1化学与化工), 1987, 12(4): 6-12. |
Yin P. Thermodynamic analysis of dimethyl oxalate and dimethyl carbonate prepared by carbon monoxide coupling [J]. Natural Gas Chemical Industry(C1 Chemistry and Technology), 1987, 12(4): 6-12. | |
31 | 时钧. 化学工程手册[M]. 2版. 北京: 化学工业出版社, 1996. |
Shi J. Chemical Engineering Handbook[M]. 2nd ed. Beijing: Chemical Industry Press, 1996. | |
32 | Li Y X. A comparative study on heat transfer performance of typical petrochemical reactors[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(4): 61-70. |
33 | 苏传好. 乙二醇生产过程中CO偶联生产草酸二甲酯工艺优化[J]. 云南化工, 2017, 44(7): 36-39. |
Su C H. Process optimization of CO coupling production of dimethyl oxalate in the process of ethylene glycol production[J]. Yunnan Chemical Technology, 2017, 44(7): 36-39. | |
34 | 计扬. CO催化偶联制草酸二甲酯反应机理、催化剂和动力学的研究[D]. 上海: 华东理工大学, 2010. |
Ji Y. Study of catalyst, mechanism, and intrinsic kinetics of CO catalytic coupling to dimethyl oxalate (DMO)[D]. Shanghai: East China University of Science and Technology, 2010. |
[1] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
[2] | Guilin DONG, Zuwei LUO, Yueqiang CAO, Jinghong ZHOU, Wei LI, Xinggui ZHOU. Effect of liquid-phase reduction temperature on performance of silver-silica catalysts for hydrogenation of dimethyl oxalate to methyl glycolate [J]. CIESC Journal, 2022, 73(1): 232-240. |
[3] | WANG Denghao, ZHANG Chuancai, ZHU Mingyuan, YU Feng, DAI Bin. Efficient and stable hydrogenation of dimethyl oxalate via copper-nickel catalysts [J]. CIESC Journal, 2017, 68(7): 2739-2745. |
[4] | LIU Yi, LIU Yong, CHEN Jianfeng, ZHANG Yi. Effects of MnOx supports on light olefin synthesis using cobalt catalyst in Fischer-Tropsch reaction [J]. CIESC Journal, 2015, 66(9): 3413-3420. |
[5] | WANG Ziliang,LI Ruijun,XIE Donglai. An experimental study on a CO preferential oxidation reactor [J]. Chemical Industry and Engineering Progree, 2012, 31(03): 523-527. |
[6] | WEN Shoudong,HU Xinglan,GONG Jinlong,MA Xinbin. Effect of Mo content in MoO3/γ-Al2O3 on the catalytic activity for transesterification of dimethyl oxalate with phenol [J]. , 2008, 27(9): 1439-. |
[7] | Wu Peng, Li Shaofen, Liao Hui. PARAMETRIC SENSITIVITY IN FIXED BED REACTOR WITH CO-CURRENT COOLING [J]. , 1996, 4(3): 219-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||