CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 275-283.DOI: 10.11949/0438-1157.20211039
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Mingyu MA1,2(),Chao WANG3,Yunjia LI4,Changming LI5,Xuejing LIU1,Shiqiu GAO2,Jian YU2()
Received:
2021-07-23
Revised:
2021-10-11
Online:
2022-01-18
Published:
2022-01-05
Contact:
Jian YU
马铭宇1,2(),王超3,李运甲4,李长明5,刘雪景1,高士秋2,余剑2()
通讯作者:
余剑
作者简介:
马铭宇(1997—),男,硕士研究生,CLC Number:
Mingyu MA, Chao WANG, Yunjia LI, Changming LI, Xuejing LIU, Shiqiu GAO, Jian YU. Preparation and performance study of catalyst for COS hydrolysis and adsorption in blast furnace gas[J]. CIESC Journal, 2022, 73(1): 275-283.
马铭宇, 王超, 李运甲, 李长明, 刘雪景, 高士秋, 余剑. 高炉煤气中羰基硫水解吸附催化剂的制备及性能研究[J]. 化工学报, 2022, 73(1): 275-283.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 Effect of different space velocity (a), loading quantity (b) and gas concentration (c) on COS removal ability, and the removal capacity of base modified EAC on sulfur-containing substance in simulated blast furnace gas (d)
样品 | 元素/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | O | S | Na | Al | Si | Cl | Ca | Fe | |
EAC-0.450%NaOH失活前 | 87.28 | 11.13 | 0.30 | 0.74 | 0.06 | 0.11 | 0.04 | 0.14 | 0.10 |
EAC-0.450%NaOH失活后 | 83.23 | 12.34 | 3.15 | 0.82 | 0.07 | 0.09 | 0.03 | 0.21 | 0.06 |
Table 1 The EDS results of EAC-0.450%NaOH before and after inactivation
样品 | 元素/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | O | S | Na | Al | Si | Cl | Ca | Fe | |
EAC-0.450%NaOH失活前 | 87.28 | 11.13 | 0.30 | 0.74 | 0.06 | 0.11 | 0.04 | 0.14 | 0.10 |
EAC-0.450%NaOH失活后 | 83.23 | 12.34 | 3.15 | 0.82 | 0.07 | 0.09 | 0.03 | 0.21 | 0.06 |
1 | Angeli S D, Gossler S, Lichtenberg S, et al. Reduction of CO2 emission from off-gases of steel industry by dry reforming of methane[J]. Angewandte Chemie International Edition, 2021, 60(21): 11852-11857. |
2 | 周守毅. 钢铁企业副产煤气中硫化物的测定[J]. 环境科学与技术, 2017, 40(S1): 252-254. |
Zhou S Y. Determiningsulfur compound in by-product gas of iron and steel enterprises[J]. Environmental Science & Technology, 2017, 40(S1): 252-254. | |
3 | 郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势[J]. 钢铁研究学报, 2020, 32(7): 525-531. |
Guo Y H. Current station and tendency of purification and upgrading of blast furnace gas[J]. Journal of Iron and Steel Research, 2020, 32(7): 525-531. | |
4 | Wang X Q, Qiu J, Ning P, et al. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions[J]. Journal of Hazardous Materials, 2012, 229/230: 128-136. |
5 | Wang H Y, Yi H H, Ning P, et al. Calcined hydrotalcite-like compounds as catalysts for hydrolysis carbonyl sulfide at low temperature[J]. Chemical Engineering Journal, 2011, 166(1): 99-104. |
6 | Zhang Y Q, Xiao Z B, Ma J X. Hydrolysis of carbonyl sulfide over rare earth oxysulfides[J]. Applied Catalysis B: Environmental, 2004, 48(1): 57-63. |
7 | Bashkova S, Armstrong T R, Schwartz V. Selective catalytic oxidation of hydrogen sulfide on activated carbons impregnated with sodium hydroxide[J]. Energy & Fuels, 2009, 23(3): 1674-1682. |
8 | 吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291. |
Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291. | |
9 | 王红妍, 易红宏, 唐晓龙, 等. 改性活性炭催化水解羰基硫[J]. 中南大学学报(自然科学版), 2011, 42(3): 848-852. |
Wang H Y, Yi H H, Tang X L, et al. Catalytic hydrolysis of carbonyl sulfide over modified activated carbon[J]. Journal of Central South University (Science and Technology), 2011, 42(3):848-852. | |
10 | 李新学, 刘迎新, 魏雄辉. 羰基硫脱除技术[J]. 现代化工, 2004, 24(8): 19-22. |
Li X X, Liu Y X, Wei X H. Technology for carbonyl sulfide removal[J]. Modern Chemical Industry, 2004, 24(8):19-22. | |
11 | 李敏, 张智宏, 魏燕. Cu、Ag改性活性炭常温脱除低浓度羰基硫性能[J]. 精细化工, 2016, 33(4): 390-395. |
Li M, Zhang Z H, Wei Y. Adsorption of low concentration of carbonyl sulfide by Cu, Ag modified activated carbon at ambient temperature[J]. Fine Chemicals, 2016, 33(4): 390-395. | |
12 | Li B C. Human nature, the means-ends relationship, and alienation: themes for potential East-West collaboration[J]. Technology in Society, 2015, 43: 60-64. |
13 | He D, Yi H H, Tang X L, et al. The catalytic hydrolysis of carbon disulfide on Fe-Cu-Ni/AC catalyst at low temperature[J]. Journal of Molecular Catalysis A: Chemical, 2012, 357: 44-49. |
14 | Li K L, Ning P, Li K, et al. Low temperature catalytic hydrolysis of carbon disulfide on activated carbon fibers modified by non-thermal plasma[J]. Plasma Chemistry and Plasma Processing, 2017, 37(4): 1175-1191. |
15 | Qie Z P, Sun F, Zhang Z K, et al. A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/SO2/NO[J]. Chemical Engineering Journal, 2020, 389: 124262. |
16 | Izquierdo M T, Rubio B, Mayoral C, et al. Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas[J]. Fuel, 2003, 82(2): 147-151. |
17 | 李俊杰, 魏进超, 刘昌齐. 活性炭法多污染物控制技术的工业应用[J]. 烧结球团, 2017, 42(3): 79-85. |
Li J J, Wei J C, Liu C Q. Combined desulfurization, denitrification and reduction of air toxice using activated coke[J]. Sintering and Pelletizing, 2017, 42(3): 79-85. | |
18 | 李阳, 朱玉雯, 高继慧, 等. 活性焦孔结构演变规律及对脱硫性能的影响[J]. 化工学报, 2015, 66(3): 1126-1132. |
Li Y, Zhu Y W, Gao J H, et al. Activated coke pore structure evolution and its influence on desulfuration[J]. CIESC Journal, 2015, 66(3): 1126-1132. | |
19 | 杨林, 孟小谜, 姚露, 等. 天然矿物共混活性焦联合低温脱硫脱硝[J]. 化工学报, 2021, 72(4): 2241-2248. |
Yang L, Meng X M, Yao L, et al. Combined low-temperature flue gas denitrification and desulfurization over the natural mineral blending modified activated coke[J]. CIESC Journal, 2021, 72(4): 2241-2248. | |
20 | Li Y R, Lin Y T, Wang B, et al. Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification[J]. Journal of Cleaner Production, 2019, 228: 1391-1400. |
21 | Tsuji K, Shiraishi I. Combined desulfurization, denitrification and reduction of air toxics using activated coke (1): Activity of activated coke[J]. Fuel, 1997, 76(6): 549-553. |
22 | 于凤芹, 李运甲, 刘周恩, 等. 移动床活性焦烟气净化工艺中废活性焦的形成与特征分析[J]. 过程工程学报, 2020, 20(6): 695-702. |
Yu Fengqin, Li Yunjia, Liu Zhou'en, et al. Formation and characteristics of used activated coke from flue gas purification process by activated coke in moving bed[J]. The Chinese Journal of Process Engineering, 2020, 20(6): 695-702. | |
23 | Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389. |
24 | Li Y J, Zhang X L, Huangfu L, et al. The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J]. Fuel, 2020, 275: 117862. |
25 | Szymański G S, Karpiński Z, Biniak S, et al. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon[J]. Carbon, 2002, 40(14): 2627-2639. |
26 | Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796. |
27 | Jia Y F, Xiao B, Thomas K M. Adsorption of metal ions on nitrogen surface functional groups in activated carbons[J]. Langmuir, 2002, 18(2): 470-478. |
28 | Mawhinney D B, Yates J T. FTIR study of the oxidation of amorphous carbon by ozone at 300 K—direct COOH formation[J]. Carbon, 2001, 39(8): 1167-1173. |
29 | Cagniant D, Gruber R, Boudou J P, et al. Structural characterization of nitrogen-enriched coals[J]. Energy & Fuels, 1998, 12(4): 672-681. |
30 | Qiu J, Ning P, Wang X Q, et al. Removing carbonyl sulfide with metal-modified activated carbon[J]. Frontiers of Environmental Science & Engineering, 2016, 10(1): 11-18. |
31 | Lin Y T, Li Y R, Xu Z C, et al. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel, 2018, 223: 312-323. |
32 | Rhodes C, Riddel S A, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review[J]. Catalysis Today, 2000, 59(3/4): 443-464. |
33 | 陈凯琳, 黄小凤, 李琳丽, 等. 吸附法脱除废气中羰基硫的研究进展[J]. 化学通报, 2021, 84(6): 543-552. |
Chen K L, Huang X F, Li L L, et al. Research progress in removal of carbonyl sulfide from waste gas by adsorption method[J]. Chemistry, 2021, 84(6): 543-552. | |
34 | Zhao H, Zhang D, Wang F, et al. Removal of carbonyl sulfide from syngas using a novel mixed-oxide sorbent[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 32(8): 759-768. |
35 | Pan Y K, Chen M Q, Su Z, et al. Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization[J]. Applied Catalysis B: Environmental, 2021, 280: 119444. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Bowen LEI, Jianhua WU, Qihang WU. Research on high injection superheat cycle for R290 low pressure ratio heat pump [J]. CIESC Journal, 2023, 74(5): 1875-1883. |
[12] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[13] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[14] | Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771. |
[15] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||