CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4974-4986.DOI: 10.11949/0438-1157.20220761
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Ziyi CHI(), Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO()
Received:
2022-05-30
Revised:
2022-10-12
Online:
2022-12-06
Published:
2022-11-05
Contact:
Wende XIAO
通讯作者:
肖文德
作者简介:
迟子怡(1998—),女,博士研究生,jenny100@ sjtu.edu.cn
基金资助:
CLC Number:
Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions[J]. CIESC Journal, 2022, 73(11): 4974-4986.
迟子怡, 刘成伟, 张欲凌, 李学刚, 肖文德. CO氧化偶联反应器模拟与优化[J]. 化工学报, 2022, 73(11): 4974-4986.
Add to citation manager EndNote|Ris|BibTeX
参数 | 表达式 |
---|---|
Der[ | |
ker[ | ker= ker,0+ kf RePr / Per |
kfs[ | kfsdp/ Dij = 2+1.1Sc1/3Re0.6 |
hfs[ | hfsdp/ kf = 2+1.1Pr1/3Re0.6 |
hw[ | hw= Nuwkf/dp, |
ho[ | |
hew[ | 对于并流和逆流: 对于恒温换热: |
Table 1 Parameters in two-dimensional heterogeneous model
参数 | 表达式 |
---|---|
Der[ | |
ker[ | ker= ker,0+ kf RePr / Per |
kfs[ | kfsdp/ Dij = 2+1.1Sc1/3Re0.6 |
hfs[ | hfsdp/ kf = 2+1.1Pr1/3Re0.6 |
hw[ | hw= Nuwkf/dp, |
ho[ | |
hew[ | 对于并流和逆流: 对于恒温换热: |
Ak | Ak,ref | Bk/(kJ/mol) |
---|---|---|
KCO· | 0.13 | -103.23 |
KNO· | 0.32 | -92.91 |
3.22 | -31.25 | |
KH· | 1.01 | -60.90 |
kDMO | 2.19 | -62.12 |
kDMC | 0.42 | -5.54 |
kMF | 0.24 | 49.13 |
Table 2 Kinetic parameters
Ak | Ak,ref | Bk/(kJ/mol) |
---|---|---|
KCO· | 0.13 | -103.23 |
KNO· | 0.32 | -92.91 |
3.22 | -31.25 | |
KH· | 1.01 | -60.90 |
kDMO | 2.19 | -62.12 |
kDMC | 0.42 | -5.54 |
kMF | 0.24 | 49.13 |
Pin/kPa | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
450 | 90.20 | 95.70 | 3.41 | 0.88 | 158.04 | 159.74 | 2.92 |
500 | 85.64 | 96.43 | 2.95 | 0.62 | 152.60 | 137.08 | 2.79 |
550 | 80.43 | 96.93 | 2.62 | 0.45 | 148.23 | 120.79 | 2.64 |
600 | 75.08 | 97.28 | 2.37 | 0.35 | 145.11 | 108.30 | 2.47 |
650 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
Table 3 Effect of pressure on reactor performance
Pin/kPa | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
450 | 90.20 | 95.70 | 3.41 | 0.88 | 158.04 | 159.74 | 2.92 |
500 | 85.64 | 96.43 | 2.95 | 0.62 | 152.60 | 137.08 | 2.79 |
550 | 80.43 | 96.93 | 2.62 | 0.45 | 148.23 | 120.79 | 2.64 |
600 | 75.08 | 97.28 | 2.37 | 0.35 | 145.11 | 108.30 | 2.47 |
650 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
GHSV/h-1 | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
3000 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
3500 | 65.86 | 97.44 | 2.26 | 0.30 | 145.16 | 133.92 | 2.53 |
4000 | 62.61 | 97.29 | 2.38 | 0.34 | 147.62 | 177.03 | 2.75 |
4500 | 60.18 | 97.08 | 2.53 | 0.39 | 150.13 | 229.80 | 2.97 |
5000 | 58.65 | 96.77 | 2.75 | 0.48 | 152.82 | 296.35 | 3.20 |
Table 4 Effect of GHSV on reactor performance
GHSV/h-1 | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
3000 | 69.90 | 97.54 | 2.17 | 0.28 | 143.00 | 98.34 | 2.31 |
3500 | 65.86 | 97.44 | 2.26 | 0.30 | 145.16 | 133.92 | 2.53 |
4000 | 62.61 | 97.29 | 2.38 | 0.34 | 147.62 | 177.03 | 2.75 |
4500 | 60.18 | 97.08 | 2.53 | 0.39 | 150.13 | 229.80 | 2.97 |
5000 | 58.65 | 96.77 | 2.75 | 0.48 | 152.82 | 296.35 | 3.20 |
No. | yMN,in/% | yCO,in/% | yNO,in/% | Tin /℃ | Pin/kPa | GHSV/h-1 | wc/ (kg/s) | η | εb |
---|---|---|---|---|---|---|---|---|---|
1 | 12.57 | 40.00 | 7.94 | 130.55 | 535.32 | 3179.78 | 0.011 | 0.35 | 0.45 |
2 | 13.94 | 39.98 | 7.60 | 136.24 | 590.47 | 3744.12 | 0.013 | 0.25 | 0.50 |
3 | 13.79 | 40.00 | 5.29 | 137.32 | 505.30 | 4554.93 | 0.014 | 0.21 | 0.55 |
4 | 12.61 | 30.00 | 8.46 | 128.23 | 582.70 | 3375.64 | 0.013 | 0.38 | 0.45 |
5 | 12.63 | 30.00 | 5.70 | 126.36 | 578.14 | 3907.57 | 0.014 | 0.35 | 0.50 |
6 | 14.52 | 29.98 | 8.66 | 129.62 | 586.35 | 4999.46 | 0.020 | 0.36 | 0.55 |
Table 5 Optimized conditions
No. | yMN,in/% | yCO,in/% | yNO,in/% | Tin /℃ | Pin/kPa | GHSV/h-1 | wc/ (kg/s) | η | εb |
---|---|---|---|---|---|---|---|---|---|
1 | 12.57 | 40.00 | 7.94 | 130.55 | 535.32 | 3179.78 | 0.011 | 0.35 | 0.45 |
2 | 13.94 | 39.98 | 7.60 | 136.24 | 590.47 | 3744.12 | 0.013 | 0.25 | 0.50 |
3 | 13.79 | 40.00 | 5.29 | 137.32 | 505.30 | 4554.93 | 0.014 | 0.21 | 0.55 |
4 | 12.61 | 30.00 | 8.46 | 128.23 | 582.70 | 3375.64 | 0.013 | 0.38 | 0.45 |
5 | 12.63 | 30.00 | 5.70 | 126.36 | 578.14 | 3907.57 | 0.014 | 0.35 | 0.50 |
6 | 14.52 | 29.98 | 8.66 | 129.62 | 586.35 | 4999.46 | 0.020 | 0.36 | 0.55 |
No. | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
1 | 76.84 | 97.28 | 2.19 | 0.53 | 157.71 | 149.40 | 2.91 |
2 | 76.42 | 96.16 | 2.97 | 0.87 | 167.25 | 116.31 | 3.73 |
3 | 77.87 | 95.16 | 3.54 | 1.30 | 170.09 | 133.94 | 4.53 |
4 | 75.18 | 96.83 | 2.63 | 0.54 | 154.33 | 149.92 | 3.01 |
5 | 74.97 | 96.94 | 2.55 | 0.51 | 154.50 | 124.45 | 3.49 |
6 | 70.41 | 95.98 | 3.31 | 0.71 | 159.04 | 130.72 | 4.77 |
Table 6 Optimized results
No. | XMN/% | SDMO/% | SDMC/% | SMF/% | Tmax /oC | ΔP/kPa | STY/(kg/h) |
---|---|---|---|---|---|---|---|
1 | 76.84 | 97.28 | 2.19 | 0.53 | 157.71 | 149.40 | 2.91 |
2 | 76.42 | 96.16 | 2.97 | 0.87 | 167.25 | 116.31 | 3.73 |
3 | 77.87 | 95.16 | 3.54 | 1.30 | 170.09 | 133.94 | 4.53 |
4 | 75.18 | 96.83 | 2.63 | 0.54 | 154.33 | 149.92 | 3.01 |
5 | 74.97 | 96.94 | 2.55 | 0.51 | 154.50 | 124.45 | 3.49 |
6 | 70.41 | 95.98 | 3.31 | 0.71 | 159.04 | 130.72 | 4.77 |
1 | Yue H R, Zhao Y J, Ma X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218-4244. |
2 | 丁怡婷. 煤炭业结构更优底色更绿[N]. 人民日报, 2022-05-11. |
Ding Y T. Better structure and environmental protection of coal industry[N]. People's Daily, 2022-05-11. | |
3 | 张鑫. 2021年中国煤制乙二醇行业市场现状分析, 行业迎来增速迅猛阶段[EB/OL]. [2022-10-17]. . |
Zhang X. Analysis of the market status of China's coal-to-ethylene glycol industry in 2021, the industry will usher in a stage of rapid growth[EB/OL]. [2022-10-17]. . | |
4 | Wei R X, Yan C L, Yang A, et al. Improved process design and optimization of 200 kt/a ethylene glycol production using coal-based syngas[J]. Chemical Engineering Research and Design, 2018, 132: 551-563. |
5 | 刘秀芳, 计扬, 李伟, 等. 蛋壳型Pd/α-Al2O3催化剂的制备及活性[J]. 催化学报, 2009, 30(3): 213-217. |
Liu X F, Ji Y, Li W, et al. Preparation and catalytic activity of egg-shelled catalyst Pd/α-Al2O3 [J]. Chinese Journal of Catalysis, 2009, 30(3): 213-217. | |
6 | Zhuo G L, Jiang X Z. Catalytic decompostiton of methyl nitrite over supported palladium catalysts in vapor phase[J]. Reaction Kinetics and Catalysis Letters, 2002, 77: 219-226. |
7 | Li Z H, Wang W H, Yin D X, et al. Effect of alkyl nitrite decomposition on catalytic performance of CO coupling reaction over supported palladium catalyst[J]. Frontiers of Chemical Science and Engineering, 2012, 6(4): 410-414. |
8 | Zhai H Y, Wang S M, Chen D K, et al. Research on thermal risk and decomposition behavior of methyl nitrite[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2131-2136. |
9 | 梁旭, 苗杰, 赵立红, 等. 一氧化碳偶联合成草酸二甲酯催化剂中试研究[J].天然气化工(C1化学与化工), 2018, 43(6): 80-83. |
Liang X, Miao J, Zhao L H, et al. Pilot test of the catalysts for synthesis of dimethyl oxalate by carbon monoxide coupling[J]. Natural Gas Chemical Industry, 2018, 43(6): 80-83. | |
10 | 李绍芬. 反应工程[M]. 3版. 北京: 化学工业出版社, 2013. |
Li S F. Reaction Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2013. | |
11 | Borio D O, Bucalá V, Orejas J A, et al. Cocurrently-cooled fixed-bed reactors: a simple approach to optimal cooling design[J]. AIChE Journal, 1989, 35(11): 1899-1902. |
12 | 徐艳, 马新宾, 许根慧. 草酸二乙酯合成反应器参数敏感性研究[J]. 石油化工, 2003, 32: 835-837. |
Xu Y, Ma X B, Xu G H. Study on parameter sensitivity of diethyl oxalate synthesis reactor[J]. Petrochemical Technology, 2003, 32: 835-837. | |
13 | 徐艳, 马新宾, 李振花. 壳式固定床草酸二乙酯合成反应器模拟分析[J]. 化学反应工程与工艺, 2008, 24(3): 204-210. |
Xu Y, Ma X B, Li Z H. Simulation analysis on tube-shell type fixed bed reactor for synthesis of diethyl oxalate in gaseous phase[J]. Chemical Reaction Engineering and Technology, 2008, 24(3): 204-210. | |
14 | 鲁文质. SDMO路线合成乙二醇的模拟研究[D]. 上海: 上海交通大学, 2006. |
Lu W Z. Simulation on ethylene glycol synthesis by super DMO-based technology[D]. Shanghai: Shanghai Jiao Tong University, 2006. | |
15 | 毛文发, 郑赛男, 骆念军, 等. 列管固定床反应器内CO氧化偶联制草酸二甲酯反应模拟及优化[J]. 化工学报, 2022, 73(1): 284-293. |
Mao W F, Zheng S N, Luo N J, et al. Simulation and optimization on oxidative coupling reaction of CO to dimethyl oxalate in a tubular fixed bed reactor[J]. CIESC Journal, 2022, 73(1): 284-293. | |
16 | Iordanidi A. Mathematical modeling of catalytic fixed bed reactors[D]. Enschede: University of Twente, 2002. |
17 | Chi Z Y, Yang L Q, Li X G, et al. CO oxidative coupling with nitrite to oxalate over palladium catalyst: a comprehensive kinetic modeling[J]. Chemical Engineering Journal, 2022, 446: 136656. |
18 | 唐先智. α-氧化铝载体的研制及其在CO偶联反应中的应用[D]. 上海: 上海交通大学, 2016. |
Tang X Z. Preparation of α-Al2O3 support and the application in CO coupling reaction[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
19 | 黄雄杰, 李学刚, 肖文德. CO偶联制备草酸二甲酯的动力学研究[J]. 天然气化工(C1化学与化工), 2019, 44(5): 37-40, 75. |
Huang X J, Li X G, Xiao W D. Kinetic study of CO coupling reaction to produce dimethyl oxalate[J]. Natural Gas Chemical Industry, 2019, 44(5): 37-40, 75. | |
20 | Zenner A, Fiaty K, Bellière-Baca V, et al. Effective heat transfers in packed bed: experimental and model investigation[J]. Chemical Engineering Science, 2019, 201: 424-436. |
21 | Wakao N, Kaguei S. Heat and Mass Transfer in Packed Beds[M]. New York: Gordon & Breach Science, 1982. |
22 | 高白薇. 管壳式换热器的计算与选型[J]. 安徽化工, 2017, 43(4): 83-85, 87. |
Gao B W. Calculation and selection of shell and tube heat exchanger[J]. Anhui Chemical Industry, 2017, 43(4): 83-85, 87. | |
23 | 陈敏恒, 丛德滋, 方图南, 等. 化工原理[M]. 3版. 北京: 化学工业出版社, 2006. |
Chen M H, Cong D Z, Fang T N, et al. Principles of Chemical Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2006. | |
24 | 邵青楠, 迟子怡, 李学刚, 等. 铁钼法甲醇制甲醛催化动力学研究及反应器模拟[J]. 天然气化工(C1化学与化工), 2021, 46(5): 121-128. |
Shao Q N, Chi Z Y, Li X G, et al. Kinetic study and reactor simulation of methanol to formaldehyde over Fe-Mo catalysts[J]. Natural Gas Chemical Industry, 2021, 46(5): 121-128. | |
25 | Borio D O, Gatica J E, Porras J A. Wall-cooled fixed-bed reactors: parametric sensitivity as a design criterion[J]. AIChE Journal, 1989, 35(2): 287-292. |
26 | Kummer A, Varga T. What do we know already about reactor runaway? A review[J]. Process Safety and Environmental Protection, 2021, 147: 460-476. |
27 | Adler J, Enig J W. The critical conditions in thermal explosion theory with reactant consumption[J]. Combustion and Flame, 1964, 8(2): 97-103. |
28 | Ergun S. Fluid flow through packed columns[J]. Fluid Flow Through Packed Columns, 1952, 48: 89-94. |
29 | Partopour B, Dixon A G. Effect of particle shape on methanol partial oxidation in a fixed bed using CFD reactor modeling[J]. AIChE Journal, 2020, 66(5): e16904. |
30 | Liu X L, Qin B, Zhang Q F, et al. Optimizing catalyst supports at single catalyst pellet and packed bed reactor levels: a comparison study[J]. AlChE Journal, 2021, 67(8): e17163. |
31 | Zhang M H, Dong H, Geng Z F. A particle-resolved CFD model coupling reaction-diffusion inside fixed-bed reactor[J]. Advanced Powder Technology, 2019, 30(6): 1226-1238. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[5] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[13] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[14] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[15] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||