CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1291-1299.DOI: 10.11949/0438-1157.20211351
• Process system engineering • Previous Articles Next Articles
Libang LIU1,2,3(),Song YANG1,3(),Zhijian WANG3,4(),Xinxin HE4,Wenlei ZHAO4,Shoujun LIU1,2,3,Wenguang DU1,2,3,Jie MI2,3
Received:
2021-09-17
Revised:
2021-12-20
Online:
2022-03-14
Published:
2022-03-15
Contact:
Song YANG,Zhijian WANG
刘立邦1,2,3(),杨颂1,3(),王志坚3,4(),贺欣欣4,赵文磊4,刘守军1,2,3,杜文广1,2,3,米杰2,3
通讯作者:
杨颂,王志坚
作者简介:
刘立邦(1997—),女,硕士研究生,基金资助:
CLC Number:
Libang LIU, Song YANG, Zhijian WANG, Xinxin HE, Wenlei ZHAO, Shoujun LIU, Wenguang DU, Jie MI. Prediction of coke quality based on improved WOA-LSTM[J]. CIESC Journal, 2022, 73(3): 1291-1299.
刘立邦, 杨颂, 王志坚, 贺欣欣, 赵文磊, 刘守军, 杜文广, 米杰. 基于改进WOA-LSTM的焦炭质量预测[J]. 化工学报, 2022, 73(3): 1291-1299.
Add to citation manager EndNote|Ris|BibTeX
焦炭 | 入炉煤 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | M25 | 挥发分/% (质量) | M10 | 灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | 黏结 指数 | 挥发分/% (质量) | 细度/% (质量) |
12.71 | 0.80 | 7.90 | 90.00 | 1.04 | 7.60 | 9.88 | 1.03 | 12.95 | 51.50 | 25.59 | 88.40 |
12.90 | 0.86 | 11.40 | 88.50 | 1.14 | 10.00 | 9.69 | 1.01 | 11.45 | 50.50 | 23.34 | 88.40 |
12.76 | 0.67 | 9.55 | 86.30 | 1.04 | 11.70 | 10.23 | 0.89 | 10.50 | 52.00 | 25.42 | 82.65 |
14.15 | 0.79 | 4.45 | 91.40 | 1.35 | 6.40 | 10.19 | 0.84 | 10.30 | 53.00 | 24.39 | 82.85 |
13.75 | 0.56 | 7.25 | 90.90 | 1.29 | 7.60 | 10.80 | 0.75 | 11.65 | 56.00 | 26.03 | 80.85 |
14.25 | 0.59 | 10.85 | 87.60 | 1.16 | 10.40 | 10.58 | 0.75 | 10.55 | 65.00 | 26.76 | 81.05 |
13.43 | 0.62 | 7.30 | 90.40 | 1.23 | 7.10 | 10.33 | 0.76 | 9.35 | 65.50 | 27.23 | 79.75 |
13.73 | 0.62 | 7.20 | 86.70 | 1.22 | 12.10 | 10.08 | 0.73 | 10.00 | 57.00 | 25.78 | 84.65 |
13.14 | 0.63 | 7.25 | 88.50 | 1.06 | 9.50 | 10.45 | 0.79 | 9.50 | 55.50 | 26.16 | 81.05 |
13.87 | 0.52 | 9.20 | 88.70 | 1.29 | 8.60 | 10.12 | 0.71 | 10.40 | 54.50 | 25.98 | 80.80 |
13.40 | 0.64 | 4.50 | 90.30 | 1.08 | 7.80 | 10.07 | 0.80 | 9.60 | 54.00 | 24.85 | 83.05 |
Table 1 Part of the raw data
焦炭 | 入炉煤 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | M25 | 挥发分/% (质量) | M10 | 灰分/% (质量) | 全硫/% (质量) | 水分/% (质量) | 黏结 指数 | 挥发分/% (质量) | 细度/% (质量) |
12.71 | 0.80 | 7.90 | 90.00 | 1.04 | 7.60 | 9.88 | 1.03 | 12.95 | 51.50 | 25.59 | 88.40 |
12.90 | 0.86 | 11.40 | 88.50 | 1.14 | 10.00 | 9.69 | 1.01 | 11.45 | 50.50 | 23.34 | 88.40 |
12.76 | 0.67 | 9.55 | 86.30 | 1.04 | 11.70 | 10.23 | 0.89 | 10.50 | 52.00 | 25.42 | 82.65 |
14.15 | 0.79 | 4.45 | 91.40 | 1.35 | 6.40 | 10.19 | 0.84 | 10.30 | 53.00 | 24.39 | 82.85 |
13.75 | 0.56 | 7.25 | 90.90 | 1.29 | 7.60 | 10.80 | 0.75 | 11.65 | 56.00 | 26.03 | 80.85 |
14.25 | 0.59 | 10.85 | 87.60 | 1.16 | 10.40 | 10.58 | 0.75 | 10.55 | 65.00 | 26.76 | 81.05 |
13.43 | 0.62 | 7.30 | 90.40 | 1.23 | 7.10 | 10.33 | 0.76 | 9.35 | 65.50 | 27.23 | 79.75 |
13.73 | 0.62 | 7.20 | 86.70 | 1.22 | 12.10 | 10.08 | 0.73 | 10.00 | 57.00 | 25.78 | 84.65 |
13.14 | 0.63 | 7.25 | 88.50 | 1.06 | 9.50 | 10.45 | 0.79 | 9.50 | 55.50 | 26.16 | 81.05 |
13.87 | 0.52 | 9.20 | 88.70 | 1.29 | 8.60 | 10.12 | 0.71 | 10.40 | 54.50 | 25.98 | 80.80 |
13.40 | 0.64 | 4.50 | 90.30 | 1.08 | 7.80 | 10.07 | 0.80 | 9.60 | 54.00 | 24.85 | 83.05 |
成分 | 贡献率/% |
---|---|
黏结指数 | 61.2206 |
硫分 | 18.3321 |
灰分 | 13.4472 |
挥发分 | 4.1202 |
水分 | 2.7072 |
细度 | 0.1772 |
Table 2 Variability of principal component explanations
成分 | 贡献率/% |
---|---|
黏结指数 | 61.2206 |
硫分 | 18.3321 |
灰分 | 13.4472 |
挥发分 | 4.1202 |
水分 | 2.7072 |
细度 | 0.1772 |
Model | Length of training/s | RMSE | R-squared |
---|---|---|---|
LSTM | 738 | 5.03×10-3 | 0.85 |
WOA-LSTM | 508 | 4.18×10-3 | 0.91 |
AGWOA-LSTM | 366 | 2.09×10-3 | 0.98 |
Table 3 Performance comparison of models
Model | Length of training/s | RMSE | R-squared |
---|---|---|---|
LSTM | 738 | 5.03×10-3 | 0.85 |
WOA-LSTM | 508 | 4.18×10-3 | 0.91 |
AGWOA-LSTM | 366 | 2.09×10-3 | 0.98 |
1 | 刘君贤. 焦炉生产过程焦炭质量与炼焦能耗智能预测模型[D]. 长沙: 中南大学, 2010. |
Liu J X. Intelligent prediction model of coke quality and energy consumption in coke oven production process [D]. Changsha: Central South University, 2010. | |
2 | 田英奇. 配煤炼焦试验优化与神经网络焦炭质量预测模型的研究[D]. 上海: 华东理工大学, 2016. |
Tian Y Q. Research on the optimization of coal-blending coking experiment and neural network coke quality prediction model[D]. Shanghai: East China University of Science and Technology, 2016. | |
3 | Malyi E I. Modification of poorly clinkering coal for use in coking[J]. Coke and Chemistry, 2014, 57(3): 87-90. |
4 | 高志芳, 朱书全, 崔荣健. 线性模型预测焦炭灰分[J]. 矿业快报, 2005, 21(10): 28-29. |
Gao Z F, Zhu S Q, Cui R J. Linear model predicting ash content in coke[J]. Express Information of Mining Industry, 2005, 21(10): 28-29. | |
5 | 张进春, 吴超. 基于多重多元回归的焦炭质量预测模型[J]. 科技导报, 2010, 28(12): 79-84. |
Zhang J C, Wu C. Coke quality prediction model based on multivariate regression[J]. Science & Technology Review, 2010, 28(12): 79-84.. | |
6 | 谢海深, 刘永新, 吕庆, 等. 焦炭质量预测模型[J]. 东北大学学报(自然科学版), 2007, 28(3): 373-377. |
Xie H S, Liu Y X, Lü Q, et al. Coke quality prediction models[J]. Journal of Northeastern University (Natural Science), 2007, 28(3): 373-377. | |
7 | 赵树果, 单晓云, 陈少敏, 等. 人工神经网络在炼焦配煤质量预测模型中的应用[J]. 中国煤炭, 2006, 32(7): 52-54. |
Zhao S G, Shan X Y, Chen S M, et al. Application of artificial neural network in prediction model of coking coal blending qualityl[J]. China Coal, 2006, 32(7): 52-54. | |
8 | 周洪, 闵礼书, 邹祥林. 基于神经网络的特大型焦炉焦炭质量预测研究[J]. 系统仿真学报, 2009, 21(6): 1543-1547, 1552. |
Zhou H, Min L S, Zou X L. Research on prediction of blended coal for coking quality in oversized coke furnace based on neural network[J]. Journal of System Simulation, 2009, 21(6): 1543-1547, 1552. | |
9 | 冯立颖. 改进的BP神经网络算法及其应用[J]. 计算机仿真, 2010, 27(12): 172-175. |
Feng L Y. Optimized BP neural networks algorithm and its application[J]. Computer Simulation, 2010, 27(12): 172-175. | |
10 | Zhou H, Yang C J, Liu W H, et al. A sliding-window T-S fuzzy neural network model for prediction of silicon content in hot metal[J]. IFAC-PapersOnLine, 2017, 50(1): 14988-14991. |
11 | Lemme A, Reinhart R F, Steil J J. Online learning and generalization of parts-based image representations by non-negative sparse autoencoders[J]. Neural Networks, 2012, 33: 194-203. |
12 | Wang X Z, Shao Q Y, Miao Q, et al. Architecture selection for networks trained with extreme learning machine using localized generalization error model[J]. Neurocomputing, 2013, 102: 3-9. |
13 | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
14 | Tang Y J, Xu J F, Matsumoto K, et al. Sequence-to-sequence model with attention for time series classification[C]//2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). Barcelona, Spain:IEEE, 2016: 503-510. |
15 | Pinheiro P, Collobert R, Jebarat, et al. Recurrent convolutional neural networks for scene labeling[C]//Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014: 82-90. |
16 | Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
17 | Liu J W, Chi G H, Liu Z Y, et al. Predicting protein structural classes with autoencoder neural networks[C]//2013 25th Chinese Control and Decision Conference (CCDC). Guiyang, China: IEEE, 2013: 1894-1899. |
18 | Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165-174. |
19 | Anang, Hadisupadmo S, Leksono E. Model predictive control design and performance analysis of a pasteurization process plant[C]//2016 International Conference on Instrumentation, Control and Automation (ICA). Bandung, Indonesia: IEEE, 2016: 81-87. |
20 | Yin S, Li X W, Gao H J, et al. Data-based techniques focused on modern industry: an overview[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 657-667. |
21 | Achanta S, Godambe T, Gangashetty S V. An investigation of recurrent neural network architectures for statistical parametric speech synthesis[C]//Interspeech 2015. ISCA, 2015: 859-863. |
22 | 耿志强, 曾荣甫, 徐圆, 等. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087. |
Geng Z Q, Zeng R F, Xu Y, et al. Intrusion detection of industrial control system based on grey wolf optimization integrated random black hole[J]. CIESC Journal, 2020, 71(3): 1080-1087. | |
23 | Zhang J Q, Sanderson A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. |
24 | 庞晓琼, 王竹晴, 曾建潮, 等. 基于PCA-NARX的锂离子电池剩余使用寿命预测[J]. 北京理工大学学报, 2019, 39(4): 406-412. |
Pang X Q, Wang Z Q, Zeng J C, et al. Prediction for the remaining useful life of lithium-ion battery based on PCA-NARX[J]. Transactions of Beijing Institute of Technology, 2019, 39(4): 406-412. | |
25 | 安剑奇, 陈易斐, 吴敏. 基于改进支持向量机的高炉一氧化碳利用率预测方法[J]. 化工学报, 2015, 66(1): 206-214. |
An J Q, Chen Y F, Wu M. A prediction method for carbon monoxide utilization ratio of blast furnace based on improved support vector regression[J]. CIESC Journal, 2015, 66(1): 206-214. | |
26 | 石博文, 尹燕燕, 刘飞. 基于PSO-控制变量参数化混合策略的间歇化工过程优化控制[J]. 化工学报, 2019, 70(3): 979-986. |
Shi B W, Yin Y Y, Liu F. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process[J]. CIESC Journal, 2019, 70(3): 979-986. | |
27 | 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. |
Jiao L C, Yang S Y, Liu F, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716. | |
28 | Wang Z J, Yang N N, Li N P, et al. A new fault diagnosis method based on adaptive spectrum mode extraction[J]. Structural Health Monitoring, 2021, 20(6): 3354-3370. |
29 | Pang Z H, Liu G P, Zhou D H, et al. Data-based predictive control for networked nonlinear systems with network-induced delay and packet dropout[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1249-1257. |
30 | Wang T, Gao H J, Qiu J B. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(2): 416-425. |
31 | Vazquez S, Rodriguez J, Rivera M, et al. Model predictive control for power converters and drives: advances and trends[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 935-947. |
32 |
Wang Z J, He X X, Yang B, et al. Subdomain adaptation transfer learning network for fault diagnosis of roller bearings[J]. IEEE Transactions on Industrial Electronics, 2021, doi:10.1109/TIE.2021.3108726 .
DOI |
33 | 雷琪, 刘君贤, 何勇, 等. 基于PCA与RBF的焦炭质量预测模型[J]. 控制工程, 2010, 17(4): 513-516, 520. |
Lei Q, Liu J X, He Y, et al. A prediction model for coke quality based on PCA and RBF[J]. Control Engineering of China, 2010, 17(4): 513-516, 520. | |
34 | Bazhin V Y, Titov O V. Analysis of the coking process on the basis of heat-flux calorimetry[J]. Coke and Chemistry, 2015, 58(7): 254-258. |
35 | Klenske E D, Zeilinger M N, Schölkopf B, et al. Gaussian process-based predictive control for periodic error correction[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 110-121. |
36 | Cheng L, Liu W C, Hou Z G, et al. Neural-network-based nonlinear model predictive control for piezoelectric actuators[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7717-7727. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[7] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[8] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[9] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[10] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[13] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[14] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[15] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||