1 |
卢春喜, 刘梦溪, 范怡平. 催化裂化反应系统关键装备技术[M]. 北京: 中国石化出版社, 2019: 18.
|
|
Lu C X, Liu M X, Fan Y P. Key Equipment Technologies of Fluid Catalytic Cracking Reaction System[M]. Beijing: China Petrochemical Press, 2019: 18.
|
2 |
侯芙生. 充分发挥催化裂化深度加工的骨干作用[J]. 当代石油石化, 2003, 11(6): 1-5.
|
|
Hou F S. Play the key role of the fluid catalytic cracking fully in the deep conversion processing[J]. Petroleum & Petrochemical Today, 2003, 11(6): 1-5.
|
3 |
范怡平, 卢春喜. 催化裂化提升管进料段内多相流动及其结构优化[J]. 化工学报, 2018, 69(1): 249-258.
|
|
Fan Y P, Lu C X. Multiphase flow characteristics and structural optimization in feed injection zone of FCC riser[J]. CIESC Journal, 2018, 69(1): 249-258.
|
4 |
陈俊武, 卢捍卫. 催化裂化在炼油厂中的地位和作用展望: 催化裂化仍将发挥主要作用[J]. 石油学报(石油加工), 2003, 19(1): 1-11.
|
|
Chen J W, Lu H W. Prospects of status and role of FCC in refinery: FCC will continue to play a leading role in petroleum refining industry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2003, 19(1): 1-11.
|
5 |
鲁维民. 重油催化裂化装置的能耗分析[J]. 石油炼制与化工, 2010, 41(12): 61-64.
|
|
Lu W M. An analysis of energy consumption in a FCC unit processing heavy feedstock[J]. Petroleum Processing and Petrochemicals, 2010, 41(12): 61-64.
|
6 |
Gao J S, Xu C M, Lin S X, et al. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J]. AIChE Journal, 1999, 45(5): 1095-1113.
|
7 |
Fan Y P, Ye S, Chao Z X, et al. Gas-solid two-phase flow in FCC riser[J]. AIChE Journal, 2002, 48(9): 1869-1887.
|
8 |
闫子涵, 王钊, 陈昇, 等. 新型催化裂化提升管进料段油、剂两相混合特性[J]. 化工学报, 2016, 67(8): 3304-3312.
|
|
Yan Z H, Wang Z, Chen S, et al. Matching between oil and catalyst in new scheme of FCC feed injection[J]. CIESC Journal, 2016, 67(8): 3304-3312.
|
9 |
Mauleon J L, Courcelle J C. FCC heat balance critical for heavy fuels[J]. Oil&Gas Journal, 1985, 83(42): 42-64.
|
10 |
Buchanan J S. Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers[J]. Industrial & Engineering Chemistry Research, 1994, 33(12): 3104-3111.
|
11 |
Theologos K N, Lygeros A I, Markatos N C. Feedstock atomization effects on FCC riser reactors selectivity[J]. Chemical Engineering Science, 1999, 54(22): 5617-5625.
|
12 |
Couch K A, Seibert K D, Van Opdorp P J. Improve FCC yields to meet changing environment-part 1[J]. Hydrocarbon Processing, 2004, 83(9): 77-81.
|
13 |
Gao J S, Xu C M, Lin S X, et al. Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors[J]. AIChE Journal, 2001, 47(3): 677-692.
|
14 |
Wang W, Lu B N, Geng J W, et al. Mesoscale drag modeling: a critical review[J]. Current Opinion in Chemical Engineering, 2020, 29: 96-103.
|
15 |
鲁波娜, 程从礼, 鲁维民, 等. 基于多尺度模型的MIP提升管反应历程数值模拟[J]. 化工学报, 2013, 64(6): 1983-1992.
|
|
Lu B N, Cheng C L, Lu W M, et al. Numerical simulation of reaction process in MIP riser based on multi-scale model[J]. CIESC Journal, 2013, 64(6): 1983-1992.
|
16 |
Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
|
17 |
鲁波娜, 张景远, 王维, 等. FCC反应过程的CFD模拟进展[J]. 化工学报, 2016, 67(8): 3121-3132.
|
|
Lu B N, Zhang J Y, Wang W, et al. CFD modeling of FCC reaction process: a review[J]. CIESC Journal, 2016, 67(8): 3121-3132.
|
18 |
Chen S, Fan Y P, Yan Z H, et al. CFD optimization of feedstock injection angle in a FCC riser[J]. Chemical Engineering Science, 2016, 153: 58-74.
|
19 |
陈昇, 范怡平, 闫子涵, 等. 催化裂化提升管进料区新型助流剂技术的CFD模拟[J]. 化工学报, 2016, 67(8): 3179-3190.
|
|
Chen S, Fan Y P, Yan Z H, et al. CFD simulation of novel fluidizer technology in feedstock injection zone of FCC riser[J]. CIESC Journal, 2016, 67(8): 3179-3190.
|
20 |
Adamczyk W P, Klimanek A, Białecki R A, et al. Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed[J]. Particuology, 2014, 15: 129-137.
|
21 |
许峻, 范怡平, 钱筱婕, 等. 催化裂化提升管进料段喷嘴射流运动-扩散特性的分析[J]. 化工学报, 2020, 71(4): 1450-1459.
|
|
Xu J, Fan Y P, Qian X J, et al. Theoretical analysis of motion-diffusion characteristics in feed injection zone of FCC riser[J]. CIESC Journal, 2020, 71(4): 1450-1459.
|
22 |
Chang J, Wang X, Liu W Y, et al. CFD modeling of hydrodynamics and kinetic reactions in a heavy oil riser reactor: influence of downward feed injection scheme[J]. Powder Technology, 2020, 361: 136-144.
|
23 |
Du Y P, Chen X P, Li S, et al. Revisiting a large-scale FCC riser reactor with a particle-scale model[J]. Chemical Engineering Science, 2022, 249: 117300.
|
24 |
Nayak S V, Joshi S L, Ranade V V. Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J]. Chemical Engineering Science, 2005, 60(22): 6049-6066.
|
25 |
Lopes G C, Rosa L M D, Mori M, et al. The importance of using three-phase 3-D model in the simulation of industrial FCC risers[J]. Chemical Engineering Transactions (CET Journal), 2011, 24: 1417-1422.
|
26 |
Patel R, Wang D W, Zhu C, et al. Effect of injection zone cracking on fluid catalytic cracking[J]. AIChE Journal, 2013, 59(4): 1226-1235.
|
27 |
李双平. 催化裂化提升管结焦原因及对策[J]. 炼油技术与工程, 2009, 39(5): 23-25.
|
|
Li S P. Coking in FCC riser and preventive measures[J]. Petroleum Refinery Engineering, 2009, 39(5): 23-25.
|
28 |
钮根林, 杨朝合, 王瑜, 等. 重油催化裂化装置结焦原因分析及抑制措施[J]. 石油大学学报(自然科学版), 2002, 26(1): 79-82.
|
|
Niu G L, Yang C H, Wang Y, et al. Cause analysis of coking in residual catalytic cracking unit and technical measures[J]. Journal of the University of Petroleum, China, 2002, 26(1): 79-82.
|
29 |
Chen S, Fan Y P, Kang H Y, et al. Gas-solid-liquid reactive CFD simulation of an industrial RFCC riser with investigation of feed injection[J]. Chemical Engineering Science, 2021, 242: 116740.
|
30 |
Lu B N, Wang W, Li J H. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447.
|
31 |
Liu C F, Wang W, Zhang N, et al. Structure-dependent multi-fluid model for mass transfer and reactions in gas-solid fluidized beds[J]. Chemical Engineering Science, 2015, 122: 114-129.
|
32 |
Law C K. Recent advances in droplet vaporization and combustion[J]. Progress in Energy and Combustion Science, 1982, 8(3): 171-201.
|