CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3394-3406.DOI: 10.11949/0438-1157.20230358
• Separation engineering • Previous Articles Next Articles
Lei XING1,2,3(), Chunyu MIAO1, Minghu JIANG1,3(), Lixin ZHAO1,3, Xinya LI1,3
Received:
2023-04-10
Revised:
2023-08-08
Online:
2023-10-18
Published:
2023-08-25
Contact:
Minghu JIANG
邢雷1,2,3(), 苗春雨1, 蒋明虎1,3(), 赵立新1,3, 李新亚1,3
通讯作者:
蒋明虎
作者简介:
邢雷(1990—),男,博士,副教授,Nepuxinglei@163.com
基金资助:
CLC Number:
Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone[J]. CIESC Journal, 2023, 74(8): 3394-3406.
邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406.
Add to citation manager EndNote|Ris|BibTeX
试验组 | d1/mm | h1/mm | D/mm | h2/mm | S/mm2 | El/% |
---|---|---|---|---|---|---|
1 | 5 | 5 | 15 | 25 | 7 | 88.19 |
2 | 4.5 | 4.5 | 14 | 22.5 | 8 | 88.55 |
3 | 4 | 4 | 13 | 20 | 9 | 88.75 |
4 | 3.5 | 3.5 | 12 | 17.5 | 10 | 88.98 |
5 | 3 | 3 | 11 | 15 | 11 | 89.20 |
6 | 2.5 | 2.5 | 10 | 12.5 | 12 | 89.23 |
7 | 2 | 2 | 9 | 10 | 13 | 89.31 |
8 | 1.5 | 1.5 | 8 | 7.5 | 14 | 89.30 |
9 | 1 | 1 | 7 | 5 | 15 | 88.98 |
Table 1 Path of steepest ascent design and numerical simulation results
试验组 | d1/mm | h1/mm | D/mm | h2/mm | S/mm2 | El/% |
---|---|---|---|---|---|---|
1 | 5 | 5 | 15 | 25 | 7 | 88.19 |
2 | 4.5 | 4.5 | 14 | 22.5 | 8 | 88.55 |
3 | 4 | 4 | 13 | 20 | 9 | 88.75 |
4 | 3.5 | 3.5 | 12 | 17.5 | 10 | 88.98 |
5 | 3 | 3 | 11 | 15 | 11 | 89.20 |
6 | 2.5 | 2.5 | 10 | 12.5 | 12 | 89.23 |
7 | 2 | 2 | 9 | 10 | 13 | 89.31 |
8 | 1.5 | 1.5 | 8 | 7.5 | 14 | 89.30 |
9 | 1 | 1 | 7 | 5 | 15 | 88.98 |
因素 | 符号 | 水平 | ||
---|---|---|---|---|
中心点(0) | 低(-1) | 高(+1) | ||
溢流口直径d1/mm | x1 | 2 | 1 | 3 |
溢流管伸入长度h1/mm | x2 | 2 | 0.5 | 3.5 |
柱体直径D/mm | x3 | 9 | 7 | 11 |
锥体高度h2/mm | x4 | 10 | 5 | 15 |
底流口面积S/mm2 | x5 | 13 | 10 | 16 |
Table 2 Factors and levels of Box-Behnken design
因素 | 符号 | 水平 | ||
---|---|---|---|---|
中心点(0) | 低(-1) | 高(+1) | ||
溢流口直径d1/mm | x1 | 2 | 1 | 3 |
溢流管伸入长度h1/mm | x2 | 2 | 0.5 | 3.5 |
柱体直径D/mm | x3 | 9 | 7 | 11 |
锥体高度h2/mm | x4 | 10 | 5 | 15 |
底流口面积S/mm2 | x5 | 13 | 10 | 16 |
组号 | x1/mm | x2/mm | x3/mm | x4/mm | x5/mm2 | y1/% |
---|---|---|---|---|---|---|
1 | 2 | 2 | 7 | 5 | 13 | 89.42 |
2 | 3 | 2 | 9 | 10 | 16 | 89.36 |
3 | 2 | 2 | 7 | 10 | 16 | 89.51 |
4 | 2 | 2 | 11 | 10 | 10 | 89.07 |
5 | 2 | 3.5 | 9 | 10 | 10 | 89.26 |
6 | 3 | 2 | 9 | 5 | 13 | 89.39 |
7 | 2 | 3.5 | 9 | 10 | 16 | 89.41 |
8 | 3 | 0.5 | 9 | 10 | 13 | 89.41 |
9 | 2 | 2 | 9 | 10 | 13 | 89.31 |
10 | 2 | 3.5 | 11 | 10 | 13 | 89.16 |
11 | 1 | 0.5 | 9 | 10 | 13 | 89.11 |
12 | 2 | 3.5 | 7 | 10 | 13 | 89.37 |
13 | 1 | 2 | 9 | 10 | 16 | 88.94 |
14 | 2 | 2 | 9 | 5 | 16 | 89.39 |
15 | 2 | 2 | 11 | 10 | 16 | 89.16 |
16 | 1 | 2 | 9 | 10 | 10 | 88.49 |
17 | 2 | 2 | 9 | 10 | 13 | 89.31 |
18 | 1 | 2 | 9 | 15 | 13 | 89.10 |
19 | 3 | 2 | 11 | 10 | 13 | 89.18 |
20 | 1 | 2 | 7 | 10 | 13 | 88.75 |
21 | 2 | 0.5 | 9 | 10 | 10 | 89.29 |
22 | 2 | 2 | 9 | 10 | 13 | 89.31 |
23 | 2 | 3.5 | 9 | 15 | 13 | 89.32 |
24 | 2 | 0.5 | 9 | 10 | 16 | 89.41 |
25 | 2 | 2 | 9 | 10 | 13 | 89.31 |
26 | 2 | 2 | 9 | 10 | 13 | 89.31 |
27 | 2 | 2 | 9 | 10 | 13 | 89.31 |
28 | 3 | 2 | 7 | 10 | 13 | 89.34 |
29 | 2 | 3.5 | 9 | 5 | 13 | 89.32 |
30 | 2 | 2 | 11 | 15 | 13 | 89.16 |
31 | 3 | 2 | 9 | 15 | 13 | 89.39 |
32 | 2 | 0.5 | 7 | 10 | 13 | 89.45 |
33 | 3 | 2 | 9 | 10 | 10 | 89.31 |
34 | 2 | 2 | 11 | 5 | 13 | 89.16 |
35 | 3 | 3.5 | 9 | 10 | 13 | 89.42 |
36 | 2 | 0.5 | 9 | 5 | 13 | 89.30 |
37 | 1 | 2 | 9 | 5 | 13 | 89.10 |
38 | 2 | 2 | 9 | 15 | 16 | 89.39 |
39 | 2 | 0.5 | 11 | 10 | 13 | 89.17 |
40 | 1 | 3.5 | 9 | 10 | 13 | 89.10 |
41 | 1 | 2 | 11 | 10 | 13 | 88.45 |
42 | 2 | 0.5 | 9 | 15 | 13 | 89.30 |
43 | 2 | 2 | 7 | 10 | 10 | 89.44 |
44 | 2 | 2 | 9 | 15 | 10 | 89.24 |
45 | 2 | 2 | 9 | 5 | 10 | 89.27 |
46 | 2 | 2 | 7 | 15 | 13 | 89.42 |
Table 3 Design and separation performance result of Box-Behnken design
组号 | x1/mm | x2/mm | x3/mm | x4/mm | x5/mm2 | y1/% |
---|---|---|---|---|---|---|
1 | 2 | 2 | 7 | 5 | 13 | 89.42 |
2 | 3 | 2 | 9 | 10 | 16 | 89.36 |
3 | 2 | 2 | 7 | 10 | 16 | 89.51 |
4 | 2 | 2 | 11 | 10 | 10 | 89.07 |
5 | 2 | 3.5 | 9 | 10 | 10 | 89.26 |
6 | 3 | 2 | 9 | 5 | 13 | 89.39 |
7 | 2 | 3.5 | 9 | 10 | 16 | 89.41 |
8 | 3 | 0.5 | 9 | 10 | 13 | 89.41 |
9 | 2 | 2 | 9 | 10 | 13 | 89.31 |
10 | 2 | 3.5 | 11 | 10 | 13 | 89.16 |
11 | 1 | 0.5 | 9 | 10 | 13 | 89.11 |
12 | 2 | 3.5 | 7 | 10 | 13 | 89.37 |
13 | 1 | 2 | 9 | 10 | 16 | 88.94 |
14 | 2 | 2 | 9 | 5 | 16 | 89.39 |
15 | 2 | 2 | 11 | 10 | 16 | 89.16 |
16 | 1 | 2 | 9 | 10 | 10 | 88.49 |
17 | 2 | 2 | 9 | 10 | 13 | 89.31 |
18 | 1 | 2 | 9 | 15 | 13 | 89.10 |
19 | 3 | 2 | 11 | 10 | 13 | 89.18 |
20 | 1 | 2 | 7 | 10 | 13 | 88.75 |
21 | 2 | 0.5 | 9 | 10 | 10 | 89.29 |
22 | 2 | 2 | 9 | 10 | 13 | 89.31 |
23 | 2 | 3.5 | 9 | 15 | 13 | 89.32 |
24 | 2 | 0.5 | 9 | 10 | 16 | 89.41 |
25 | 2 | 2 | 9 | 10 | 13 | 89.31 |
26 | 2 | 2 | 9 | 10 | 13 | 89.31 |
27 | 2 | 2 | 9 | 10 | 13 | 89.31 |
28 | 3 | 2 | 7 | 10 | 13 | 89.34 |
29 | 2 | 3.5 | 9 | 5 | 13 | 89.32 |
30 | 2 | 2 | 11 | 15 | 13 | 89.16 |
31 | 3 | 2 | 9 | 15 | 13 | 89.39 |
32 | 2 | 0.5 | 7 | 10 | 13 | 89.45 |
33 | 3 | 2 | 9 | 10 | 10 | 89.31 |
34 | 2 | 2 | 11 | 5 | 13 | 89.16 |
35 | 3 | 3.5 | 9 | 10 | 13 | 89.42 |
36 | 2 | 0.5 | 9 | 5 | 13 | 89.30 |
37 | 1 | 2 | 9 | 5 | 13 | 89.10 |
38 | 2 | 2 | 9 | 15 | 16 | 89.39 |
39 | 2 | 0.5 | 11 | 10 | 13 | 89.17 |
40 | 1 | 3.5 | 9 | 10 | 13 | 89.10 |
41 | 1 | 2 | 11 | 10 | 13 | 88.45 |
42 | 2 | 0.5 | 9 | 15 | 13 | 89.30 |
43 | 2 | 2 | 7 | 10 | 10 | 89.44 |
44 | 2 | 2 | 9 | 15 | 10 | 89.24 |
45 | 2 | 2 | 9 | 5 | 10 | 89.27 |
46 | 2 | 2 | 7 | 15 | 13 | 89.42 |
因素 | 符号 | 水平值 | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | +1 | +2 | ||
溢流分流比/% | x6 | 0.297136 | 2 | 11 | 20 | 21.7029 |
气相体积分数/% | x7 | 1.337788 | 2 | 5.5 | 9 | 9.66222 |
Table 4 Factors and levels of central composite design
因素 | 符号 | 水平值 | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | +1 | +2 | ||
溢流分流比/% | x6 | 0.297136 | 2 | 11 | 20 | 21.7029 |
气相体积分数/% | x7 | 1.337788 | 2 | 5.5 | 9 | 9.66222 |
试验组号 | x6 | x7 | y2/% |
---|---|---|---|
1 | 2 | 9 | 60.46 |
2 | 2 | 2 | 95.54 |
3 | 0.297136 | 5.5 | 52.57 |
4 | 11 | 5.5 | 97.11 |
5 | 11 | 5.5 | 97.11 |
6 | 20 | 2 | 90.82 |
7 | 11 | 1.33778 | 95.11 |
8 | 11 | 5.5 | 97.11 |
9 | 11 | 5.5 | 97.11 |
10 | 11 | 5.5 | 97.11 |
11 | 21.7029 | 5.5 | 91.46 |
12 | 20 | 9 | 93.99 |
13 | 11 | 9.66222 | 99.48 |
Table 5 Design and separation performance result of central composite design
试验组号 | x6 | x7 | y2/% |
---|---|---|---|
1 | 2 | 9 | 60.46 |
2 | 2 | 2 | 95.54 |
3 | 0.297136 | 5.5 | 52.57 |
4 | 11 | 5.5 | 97.11 |
5 | 11 | 5.5 | 97.11 |
6 | 20 | 2 | 90.82 |
7 | 11 | 1.33778 | 95.11 |
8 | 11 | 5.5 | 97.11 |
9 | 11 | 5.5 | 97.11 |
10 | 11 | 5.5 | 97.11 |
11 | 21.7029 | 5.5 | 91.46 |
12 | 20 | 9 | 93.99 |
13 | 11 | 9.66222 | 99.48 |
1 | 刘合, 郝忠献, 王连刚, 等. 人工举升技术现状与发展趋势[J]. 石油学报, 2015, 36(11): 1441-1448. |
Liu H, Hao Z X, Wang L G, et al. Current technical status and development trend of artificial lift[J]. Acta Petrolei Sinica, 2015, 36(11): 1441-1448. | |
2 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
Liu H, Gao Y, Pei X H, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
3 | 邢雷, 李金煜, 赵立新, 等. 基于响应面法的井下旋流分离器结构优化[J]. 中国机械工程, 2021, 32(15): 1818-1826. |
Xing L, Li J Y, Zhao L X, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826. | |
4 | 谢向东, 王晔春, 王进芝, 等. 低入口含气率下柱状旋流器气液分离特性研究[J]. 工程热物理学报, 2021, 42(11): 2873-2878. |
Xie X D, Wang Y C, Wang J Z, et al. Gas-liquid separation characteristics in cylindrical cyclone at low inlet void fraction[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2873-2878. | |
5 | 杨蕊, 朱宝锦, 吕超, 等. 脉动条件下旋流场内气液两相流流型及其转变机理[J]. 化工学报, 2022, 73(10): 4389-4398. |
Yang R, Zhu B J, Lyu C, et al. Study on flow pattern and transition mechanism of gas-liquid two-phase flow in swirl field under pulsating flow[J]. CIESC Journal, 2022, 73(10): 4389-4398. | |
6 | Wang Y A, Chen J Y, Yue T, et al. Measurement of thickness and analysis on flow characteristics of upper swirling liquid film in gas-liquid cylindrical cyclone[J]. Experimental Thermal and Fluid Science, 2021, 123: 110331. |
7 | van Sy L, Van D T. Selection of an optimizing inlet angle for the gas-liquid cylindrical cyclone separator on hydrokinetic behavior[J]. Journal of Advanced Marine Engineering and Technology, 2020, 44(1): 82-87. |
8 | Movafaghian S, Jaua-Marturet J A, Mohan R S, et al. The effects of geometry, fluid properties and pressure on the hydrodynamics of gas-liquid cylindrical cyclone separators[J]. International Journal of Multiphase Flow, 2000, 26(6): 999-1018. |
9 | 周闻, 王康松, 鄂承林, 等. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573. |
Zhou W, Wang K S, E C L, et al. Multi-spiral gas-liquid vortex separator pressure drop characteristics test[J]. CIESC Journal, 2019, 70(7): 2564-2573. | |
10 | 陈阳, 田思航, 孙婧元, 等. 旋流型气液分离器壁面小孔处气液相分离特性[J]. 化学工程, 2018, 46(8): 48-53. |
Chen Y, Tian S H, Sun J Y, et al. Gas-liquid phase separation characteristics through holes at the wall of a swirling gas-liquid separator[J]. Chemical Engineering (China), 2018, 46(8): 48-53. | |
11 | Yang L L, Zhang J, Ma Y, et al. Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone[J]. Chemical Engineering Science, 2020, 214: 115362. |
12 | 罗小明, 高奇峰, 刘萌, 等. 轴流式气-液旋流分离器分离特性[J]. 石油学报(石油加工), 2020, 36(3): 592-599. |
Luo X M, Gao Q F, Liu M, et al. Separation characteristics of axial-flow gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 592-599. | |
13 | Kolla S S, Mohan R S, Shoham O. Analysis of gas-liquid cylindrical cyclone separator with inlet modifications using fluid-structure interaction[J]. Journal of Energy Resources Technology, 2020, 142(4): 042003. |
14 | Ghodrat M, Kuang S, Yu A, et al. Computational study of the multiphase flow and performance of hydrocyclones: effects of cyclone size and spigot diameter[J]. Industrial & Engineering Chemistry Research, 2013, 52: 16019-16031. |
15 | Tian J Y, Ni L, Song T, et al. An overview of operating parameters and conditions in hydrocyclones for enhanced separations[J]. Separation and Purification Technology, 2018, 206: 268-285. |
16 | Wang Y A, Chen J Y, Yang Y, et al. Experimental and numerical performance study of a downward dual-inlet gas-liquid cylindrical cyclone (GLCC)[J]. Chemical Engineering Science, 2021, 238: 116595. |
17 | Yue T, Chen J Y, Song J F, et al. Experimental and numerical study of upper swirling liquid film (USLF) among gas-liquid cylindrical cyclones (GLCC)[J]. Chemical Engineering Journal, 2019, 358: 806-820. |
18 | 王旱祥, 许传宝, 于长录, 等. 天然气水合物气液分离方案设计与样机试制[J]. 石油机械, 2022, 50(7): 72-79. |
Wang H X, Xu C B, Yu C L, et al. Gas-liquid separation scheme design and prototype manufacturing for natural gas hydrate[J]. China Petroleum Machinery, 2022, 50(7): 72-79. | |
19 | 魏纳, 陈光凌, 郭平, 等. 天然气水合物脱气装置研制及性能试验[J]. 石油钻探技术, 2017, 45(2): 121-126. |
Wei N, Chen G L, Guo P, et al. The development and experimental testing of gas hydrate degassing devices[J]. Petroleum Drilling Techniques, 2017, 45(2): 121-126. | |
20 | 陈广, 阴子良, 叶东东, 等. 酸再生烟气净化旋流器的分离性能[J]. 环境工程学报, 2016, 10(10): 5770-5774. |
Chen G, Yin Z L, Ye D D, et al. Separation of cyclone in purifying smoke of acid regeneration[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5770-5774. | |
21 | 许晓波, 胡大鹏, 邓列征, 等. 旋流喷雾式单重态氧发生器的气液分离初步研究[J]. 强激光与粒子束, 2022, 34(8): 33-39. |
Xu X B, Hu D P, Deng L Z, et al. Preliminary investigation of gas-liguid separation in twisted flow aerosol singlet oxygen generator[J]. High Power Laser and Particle Beams, 2022, 34(8): 33-39. | |
22 | Ni L, Tian J Y, Song T, et al. Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective[J]. Separation & Purification Reviews, 2019, 48(1): 30-51. |
23 | 杨启明. 国外井下气液分离采气新技术研究现状分析[J]. 天然气工业, 2001, 21(2): 85-88, 3. |
Yang Q M. Analysis of present situation of studying new gas recovery technique by downhole gas liquid separation abroad[J]. Natural Gas Industry, 2001, 21(2): 85-88, 3. | |
24 | 朱焕刚, 李宗清, 杨德京, 等. 井下气液分离及回注技术研究现状分析[J]. 石油矿场机械, 2007, 36(7): 7-10. |
Zhu H G, Li Z Q, Yang D J, et al. Analysis of study on present situation of downhole gas/water separation and reinjection[J]. Oil Field Equipment, 2007, 36(7): 7-10. | |
25 | 赵勇, 贾浩民, 李敏, 等. 井下气液分离及同井回注技术的应用[J]. 天然气工业, 2010, 30(1): 56-58, 141. |
Zhao Y, Jia H M, Li M, et al. Application of downhole gas-fluid separation and reinjection in the same well[J]. Natural Gas Industry, 2010, 30(1): 56-58, 141. | |
26 | 李森, 王太文, 李青燕, 等. 井下气液分离及产出水回注技术应用研究[J]. 石油石化节能, 2011, 1(4): 36-38. |
Li S, Wang T W, Li Q Y, et al. Study on application of downhole gas-liquid separation and produced water reinjection technology[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2011, 1(4): 36-38. | |
27 | 张金山, 姜伟, 刘庆, 等. 井下油水分离技术的现状与展望[J]. 化学工程师, 2020, 34(7): 69-72. |
Zhang J S, Jiang W, Liu Q, et al. Present situation and prospect of downhole oil-water separation technology[J]. Chemical Engineer, 2020, 34(7): 69-72. | |
28 | 刘海龙. 同井注采井下气液分离器结构优化设计及流场分析[D]. 大庆: 东北石油大学, 2022. |
Liu H L. Structural optimization design and flow field analysis of downhole gas-liquid separator for injection-production in the singlew well[D]. Daqing: Northeast Petroleum University, 2022. | |
29 | 黄锟腾, 陈健勇, 陈颖, 等. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41. |
Huang K T, Chen J Y, Chen Y, et al. Research status of vapor-liquid separation technology[J]. CIESC Journal, 2021, 72(S1): 30-41. | |
30 | 李敏. 井下气液分离及回注系统研究[J]. 石油矿场机械, 2006, 35(2): 27-30. |
Li M. A new downhole gas/water separation and reinjection system[J]. Oil Field Equipment, 2006, 35(2): 27-30. | |
31 | 郑春峰, 杨万有, 孟熙然, 等. 海上高含气井新型井下气液分离器设计及性能评价[J]. 中国海上油气, 2020, 32(6): 128-135. |
Zheng C F, Yang W Y, Meng X R, et al. Design and performance evaluation of a novel downhole gas-liquid separator for offshore high gas bearing wells[J]. China Offshore Oil and Gas, 2020, 32(6): 128-135. | |
32 | 郑春峰, 杨万有, 李昂, 等. 一种新型井下三级高效气液分离器分离特性实验[J]. 石油钻采工艺, 2020, 42(6): 804-810. |
Zheng C F, Yang W Y, Li A, et al. Experimental on the separation behaviors of a new type of three-stage efficient downhole gas-liquid separator[J]. Oil Drilling & Production Technology, 2020, 42(6): 804-810. | |
33 | Meng F C. Study of the performance of a new kind of downhole gas-liquid separation with high gas content[J]. Journal of Energy and Natural Resources, 2019, 8(2): 45-49. |
34 | Lan W J, Wang H X, Li Y Q, et al. Numerical and experimental investigation on a downhole gas-liquid separator for natural gas hydrate exploitation[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109743. |
35 | Xing S B, Zhang D, Xu J Y, et al. Investigation on downhole gas-liquid two phase separation and mixing transportation characteristics with high gas fraction[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(3): 032083. |
36 | 刘培坤, 李峰, 杨兴华, 等. 基于CFD的双锥角微型旋流器分离性能的数值模拟[J]. 中国粉体技术, 2019, 25(1): 64-70. |
Liu P K, Li F, Yang X H, et al. Numerical simulation of separation performance of a double cone angle hydrocyclone based on CFD[J]. China Powder Science and Technology, 2019, 25(1): 64-70. | |
37 | 袁惠新, 吴敏浩, 付双成, 等. 微型旋流器溢流口结构参数对SCR废催化剂分离性能的影响[J]. 机械设计与制造, 2020(8): 159-162. |
Yuan H X, Wu M H, Fu S C, et al. Effect of design parameters of a micro hydrocyclone on the separation performance of waste SCR catalyst[J]. Machinery Design & Manufacture, 2020(8): 159-162. | |
38 | 张爽, 赵立新, 刘洋, 等. 脱气除油旋流系统流场分布及分离特性[J]. 化工进展, 2022, 41(1): 75-85. |
Zhang S, Zhao L X, Liu Y, et al. Analysis of flow field distribution and separation characteristics of degassing and oil-removal hydrocyclone system[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 75-85. | |
39 | 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005. |
Li Y Y, Hu C R. Experiment Design and Data Processing[M]. Beijing: Chemical Industry Press, 2005. | |
40 | 刘志涛, 田洋阳, 宋伟, 等. 基于响应面法的旋流器直径与处理量关系研究[J]. 石油机械, 2021, 49(12): 89-97. |
Liu Z T, Tian Y Y, Song W, et al. Study on relationship between cyclone diameter and treatment capacity based on response surface method[J]. China Petroleum Machinery, 2021, 49(12): 89-97. | |
41 | 刘冰, 赵振江, 韦尧尧, 等. 分流比对旋流器影响的数值模拟与试验分析[J]. 煤矿机械, 2020, 41(11): 26-29. |
Liu B, Zhao Z J, Wei Y Y, et al. Numerical simulation and experimental analysis of influence of split ratio on hydrocyclone[J]. Coal Mine Machinery, 2020, 41(11): 26-29. | |
42 | 史仕荧, 邓晓辉, 吴应湘, 等. 操作参数对柱形旋流器油水分离性能的影响[J]. 石油机械, 2011, 39(7): 4-8. |
Shi S Y, Deng X H, Wu Y X, et al. The effect of operating parameters on the oil-water separation performance of the cylindrical cyclone[J]. China Petroleum Machinery, 2011, 39(7): 4-8. | |
43 | 邢雷, 李新亚, 蒋明虎, 等. 适用于超低进液量的微型水力旋流器结构优化[J]. 机械工程学报, 2022, 58(23): 251-261. |
Xing L, Li X Y, Jiang M H, et al. Structure optimization of micro-hydrocyclone for ultra-low inlet flow rate[J]. Journal of Mechanical Engineering, 2022, 58(23): 251-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||