CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2529-2542.DOI: 10.11949/0438-1157.20220135
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Pan HUANG1(),Cheng LIAN1,2(),Honglai LIU1,2()
Received:
2022-01-25
Revised:
2022-03-22
Online:
2022-06-30
Published:
2022-06-05
Contact:
Cheng LIAN,Honglai LIU
通讯作者:
练成,刘洪来
作者简介:
黄盼(1997—),男,博士研究生,基金资助:
CLC Number:
Pan HUANG, Cheng LIAN, Honglai LIU. Heat-mass transfer in real porous electrode based on simulated annealing algorithm[J]. CIESC Journal, 2022, 73(6): 2529-2542.
黄盼, 练成, 刘洪来. 基于模拟退火算法的真实多孔电极中热-质传递的研究[J]. 化工学报, 2022, 73(6): 2529-2542.
Add to citation manager EndNote|Ris|BibTeX
Eth | ΔEth | Ncon | Niter |
---|---|---|---|
1×10-6 | 1×10-8 | 500 | 1×106 |
Table 1 Parameter setting of simulated annealing algorithm to exit the iteration
Eth | ΔEth | Ncon | Niter |
---|---|---|---|
1×10-6 | 1×10-8 | 500 | 1×106 |
多孔电极尺寸/ (个立方体) | 边长/ | 结构参数 | |||
---|---|---|---|---|---|
孔隙率 | 比表面积/ | 分形维数 | 曲折因子 | ||
0.41 | 0.545 | 1.493×107 | 3.28 | 2.36 | |
0.82 | 0.545 | 1.223×107 | 3.19 | 2.01 | |
1.64 | 0.545 | 1.306×107 | 3.11 | 2.13 |
Table 2 Structural parameters of porous electrode reconstructed by simulated annealing algorithm
多孔电极尺寸/ (个立方体) | 边长/ | 结构参数 | |||
---|---|---|---|---|---|
孔隙率 | 比表面积/ | 分形维数 | 曲折因子 | ||
0.41 | 0.545 | 1.493×107 | 3.28 | 2.36 | |
0.82 | 0.545 | 1.223×107 | 3.19 | 2.01 | |
1.64 | 0.545 | 1.306×107 | 3.11 | 2.13 |
1 | Kong L J, Zhong M, Shuang W, et al. Electrochemically active sites inside crystalline porous materials for energy storage and conversion[J]. Chemical Society Reviews, 2020, 49(8): 2378-2407. |
2 | Zhou J W, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage[J]. Chemical Society Reviews, 2017, 46(22): 6927-6945. |
3 | Sun M H, Huang S Z, Chen L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563. |
4 | Yang X Y, Chen L H, Li Y, et al. Hierarchically porous materials: synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
5 | Berre I, Doster F, Keilegavlen E. Flow in fractured porous media: a review of conceptual models and discretization approaches[J]. Transport in Porous Media, 2019, 130(1): 215-236. |
6 | Shojaeefard M H, Molaeimanesh G R, Nazemian M, et al. A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation[J]. International Journal of Hydrogen Energy, 2016, 41(44): 20276-20293. |
7 | Tao H L, Lian C, Liu H L. Multiscale modeling of electrolytes in porous electrode: from equilibrium structure to non-equilibrium transport[J]. Green Energy & Environment, 2020, 5(3): 303-321. |
8 | Lian C, Janssen M, Liu H L, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging[J]. Physical Review Letters, 2020, 124(7): 076001. |
9 | Ali B A, Allam N K. A first-principles roadmap and limits to design efficient supercapacitor electrode materials[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(32): 17494-17511. |
10 | Kong X, Jiang J, Lu D N, et al. Molecular theory for electrokinetic transport in pH-regulated nanochannels[J]. The Journal of Physical Chemistry Letters, 2014, 5(17): 3015-3020. |
11 | Gan Z D, Wang Y L, Wang M, et al. Ionophobic nanopores enhancing the capacitance and charging dynamics in supercapacitors with ionic liquids[J]. Journal of Materials Chemistry A, 2021, 9(29): 15985-15992. |
12 | Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes[J]. Nature Materials, 2020, 19(5): 552-558. |
13 | Kavokine N, Netz R R, Bocquet L. Fluids at the nanoscale: from continuum to subcontinuum transport[J]. Annual Review of Fluid Mechanics, 2021, 53: 377-410. |
14 | Tao H L, Lin S, Lian C, et al. Microscopic insights into the ion transport in graphene-based membranes with different interlayer spacing distributions[J]. Chemical Engineering Science, 2020, 212: 115354. |
15 | d'Entremont A, Pilon L. First-principles thermal modeling of electric double layer capacitors under constant-current cycling[J]. Journal of Power Sources, 2014, 246: 887-898. |
16 | Sakaguchi H, Baba R. Charging dynamics of the electric double layer in porous media[J]. Physical Review E, 2007, 76(1): 011501. |
17 | Webman I. Effective-medium approximation for diffusion on a random lattice[J]. Physical Review Letters, 1981, 47(21): 1496-1499. |
18 | Lian C, Su H P, Li C Z, et al. Non-negligible roles of pore size distribution on electroosmotic flow in nanoporous materials[J]. ACS Nano, 2019, 13(7): 8185-8192. |
19 | Gostick J, Aghighi M, Hinebaugh J, et al. OpenPNM: a pore network modeling package[J]. Computing in Science & Engineering, 2016, 18(4): 60-74. |
20 | Sadeghi M A, Aganou M, Kok M, et al. Exploring the impact of electrode microstructure on redox flow battery performance using a multiphysics pore network model[J]. Journal of the Electrochemical Society, 2019, 166(10): A2121-A2130. |
21 | Agnaou M, Sadeghi M A, Tranter T G, et al. Modeling transport of charged species in pore networks: solution of the Nernst-Planck equations coupled with fluid flow and charge conservation equations[J]. Computers & Geosciences, 2020, 140: 104505. |
22 | Conroy G C, Vannier M W. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography[J]. Science, 1984, 226(4673): 456-458. |
23 | Pan T. Computed tomography: from photon statistics to modern cone-beam CT[J]. Journal of Nuclear Medicine, 2009, 50(7): 1194. |
24 | Kunanusont N, Shimoyama Y. Porous carbon electrode for Li-air battery fabricated from solvent expansion during supercritical drying[J]. The Journal of Supercritical Fluids, 2018, 133: 77-85. |
25 | Bousige C, Ghimbeu C M, Vix-Guterl C, et al. Realistic molecular model of kerogen's nanostructure[J]. Nature Materials, 2016, 15(5): 576-582. |
26 | van Breugel K. Numerical simulation of hydration and microstructural development in hardening cement-based materials (Ⅰ): Theory[J]. Cement and Concrete Research, 1995, 25(2): 319-331. |
27 | Ankit K, Urai J L, Nestler B. Microstructural evolution in bitaxial crack-seal veins: a phase-field study[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3096-3118. |
28 | Torquato S, Haslach H W. Random heterogeneous materials: microstructure and macroscopic properties[J]. Applied Mechanics Reviews, 2002, 55(4): B62-B63. |
29 | Torquato S, Lu B. Chord-length distribution function for two-phase random media[J]. Physical Review E, 1993, 47(4): 2950-2953. |
30 | Okabe H, Blunt M J. Prediction of permeability for porous media reconstructed using multiple-point statistics[J]. Physical Review E, 2004, 70(6): 066135. |
31 | Yeong C L Y, Torquato S. Reconstructing random media[J]. Physical Review E, 1998, 57(1): 495-506. |
32 | Karsanina M V, Gerke K M, Skvortsova E B, et al. Universal spatial correlation functions for describing and reconstructing soil microstructure[J]. PLoS One, 2015, 10(5): e0126515. |
33 | Mariethoz G, Renard P, Straubhaar J. The Direct Sampling method to perform multiple-point geostatistical simulations[J]. Water Resources Research, 2010, 46(11): W11536. |
34 | Wu W, Jiang F M. Simulated annealing reconstruction and characterization of the three-dimensional microstructure of a LiCoO2 lithium-ion battery cathode[J]. Materials Characterization, 2013, 80: 62-68. |
35 | Habte B T, Jiang F M. Microstructure reconstruction and impedance spectroscopy study of LiCoO2, LiMn2O4 and LiFePO4 Li-ion battery cathodes[J]. Microporous and Mesoporous Materials, 2018, 268: 69-76. |
36 | Habte B T, Jiang F M. Effect of microstructure morphology on Li-ion battery graphite anode performance: electrochemical impedance spectroscopy modeling and analysis[J]. Solid State Ionics, 2018, 314: 81-91. |
37 | Stenzel O, Westhoff D, Manke I, et al. Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055004. |
38 | Prokop M, Vesely M, Capek P, et al. High-temperature PEM fuel cell electrode catalyst layers(Ⅰ): Microstructure reconstructed using FIB-SEM tomography and its calculated effective transport properties[J]. Electrochimica Acta, 2022, 413: 140133. |
39 | He S, Habte B T, Jiang F. LBM prediction of effective electric and species transport properties of lithium-ion battery graphite anode[J]. Solid State Ionics, 2016, 296: 146-153. |
40 | Vinodh R, Gopi C V V M, Kummara V G R, et al. A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications[J]. Journal of Energy Storage, 2020, 32: 101831. |
41 | Vandaele J, Louis B, Liu K Z, et al. Structural characterization of fibrous synthetic hydrogels using fluorescence microscopy[J]. Soft Matter, 2020, 16(17): 4210-4219. |
42 | Laurent L, Bart R, Diederik J, et al. Nested multiresolution hierarchical simulated annealing algorithm for porous media reconstruction[J]. Physical Review E, 2019, 100(5): 053316. |
43 | Tang T, Teng Q, He X, et al. A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure[J]. Journal of Microscopy, 2009, 234(3): 262-268. |
44 | Talukdar S, Torsæter O, Ioannidis M, et al. Stochastic reconstruction of chalk from 2D images[J]. Transport in Porous Media, 2002, 48(1): 101-123. |
45 | Foroutan-pour K, Dutilleul P, Smith D L. Advances in the implementation of the box-counting method of fractal dimension estimation[J]. Applied Mathematics and Computation, 1999, 105(2): 195-210. |
46 | Fernández-Martínez M, Sánchez-Granero M A. Fractal dimension for fractal structures: a Hausdorff approach revisited[J]. Journal of Mathematical Analysis and Applications, 2014, 409(1): 321-330. |
47 | Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion[J]. IEEE Transactions on Information Theory, 1992, 38(2): 910-917. |
48 | Kim A S, Chen H Q. Diffusive tortuosity factor of solid and soft cake layers: a random walk simulation approach[J]. Journal of Membrane Science, 2006, 279(1/2): 129-139. |
49 | Janssen M, Bier M. Transient response of an electrolyte to a thermal quench[J]. Physical Review E, 2019, 99(4): 042136. |
50 | Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387. |
51 | Wang M, Li P, Yu F Q. Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage[J]. Renewable Energy, 2021, 172: 599-605. |
52 | Kilic M S, Bazant M Z, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages(Ⅰ): Double-layer charging[J]. Physical Review E, 2007, 75(2): 021502. |
53 | Kilic M S, Bazant M Z, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages(Ⅱ): Modified Poisson-Nernst-Planck equations[J]. Physical Review E, 2007, 75(2): 021503. |
54 | Saurabh K, Solovchuk M A, Sheu T W H. Lattice Boltzmann method to simulate three-dimensional ion channel flow using fourth order Poisson-Nernst-Planck-Bikerman model[J]. Physics of Fluids, 2021, 33(8): 081910. |
55 | Raissi M, Karniadakis G E. Hidden physics models: machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 2018, 357: 125-141. |
[1] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[2] | Yanran ZHU, Liang GE, Xingya LI, Tongwen XU. Construction and application of three-phase ionic exchange membranes [J]. CIESC Journal, 2022, 73(6): 2397-2414. |
[3] | Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305. |
[4] | ZHANG Changxing, WANG Deshui, LIU Yufeng, SUN Shicai, PENG Donggen. Application of simulated annealing algorithm for determining parameters of rock-soil thermal properties [J]. CIESC Journal, 2015, 66(2): 545-552. |
[5] | WU Min,XIAO Wu,HE Gaohong. Analysis of equipment and operating costs of the pump and optimization of heat exchanger network [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 599-604. |
[6] | XIAOWu, DONGHongguang,LIXinqiang, YAOPingjing,LUOXing, WilfriedRoetzel. Synthesis of Large-scale Multistream Heat Exchanger Networks Based on Stream Pseudo Temperature [J]. , 2006, 14(5): 574-583. |
[7] |
WEI Guanfeng, YAO Pingjing, LUO xing, ROETZEL Wilfried.
Study on Multi-stream Heat Exchanger Network Synthesis with Parallel Genetic/Simulated Annealing Algorithm [J]. , 2004, 12(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||