CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2397-2414.DOI: 10.11949/0438-1157.20220086
• Reviews and monographs • Previous Articles Next Articles
Yanran ZHU(),Liang GE,Xingya LI(),Tongwen XU()
Received:
2022-01-17
Revised:
2022-03-04
Online:
2022-06-30
Published:
2022-06-05
Contact:
Xingya LI,Tongwen XU
通讯作者:
李兴亚,徐铜文
作者简介:
朱嫣然(1998—),女,博士研究生,基金资助:
CLC Number:
Yanran ZHU, Liang GE, Xingya LI, Tongwen XU. Construction and application of three-phase ionic exchange membranes[J]. CIESC Journal, 2022, 73(6): 2397-2414.
朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
Add to citation manager EndNote|Ris|BibTeX
1 | Xu T W. Ion exchange membranes: state of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1/2): 1-29. |
2 | Li N W, Guiver M D. Ion transport by nanochannels in ion-containing aromatic copolymers[J]. Macromolecules, 2014, 47(7): 2175-2198. |
3 | Hibbs M R, Hickner M A, Alam T M, et al. Transport properties of hydroxide and proton conducting membranes[J]. Chemistry of Materials, 2008, 20(7): 2566-2573. |
4 | Grew K N, Chiu W K S. A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes[J]. Journal of the Electrochemical Society, 2010, 157(3): B327. |
5 | Agmon N. Mechanism of hydroxide mobility[J]. Chemical Physics Letters, 2000, 319(3/4): 247-252. |
6 | Stachera D M, Childs R F, Mika A M, et al. Acid recovery using diffusion dialysis with poly(4-vinylpyridine)-filled microporous membranes[J]. Journal of Membrane Science, 1998, 148(1): 119-127. |
7 | Hickner M A. Water-mediated transport in ion-containing polymers[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(1): 9-20. |
8 | Choi Y J, Park J M, Yeon K H, et al. Electrochemical characterization of poly(vinyl alcohol)/formyl methyl pyridinium (PVA-FP) anion-exchange membranes[J]. Journal of Membrane Science, 2005, 250(1/2): 295-304. |
9 | Ran J, Hu M, Yu D B, et al. Graphene oxide embedded “three-phase” membrane to beat “trade-off” in acid recovery[J]. Journal of Membrane Science, 2016, 520: 630-638. |
10 | Wang C, Wu C M, Wu Y H, et al. Polyelectrolyte complex/PVA membranes for diffusion dialysis[J]. Journal of Hazardous Materials, 2013, 261: 114-122. |
11 | Mohammed O F, Pines D, Dreyer J, et al. Sequential proton transfer through water bridges in acid-base reactions[J]. Science, 2005, 310(5745): 83-86. |
12 | Liu L Y, Hunger J, Bakker H J. Energy relaxation dynamics of the hydration complex of hydroxide[J]. The Journal of Physical Chemistry. A, 2011, 115(51): 14593-14598. |
13 | He Y B, Ge X L, Liang X, et al. Anion exchange membranes with branched ionic clusters for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(14): 5993-5998. |
14 | Zhu Y, Ding L, Liang X, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells[J]. Energy & Environmental Science, 2018, 11(12): 3472-3479. |
15 | Ge X, He Y, Guiver M D, et al. Alkaline anion-exchange membranes containing mobile ion shuttles[J]. Advanced Materials (Deerfield Beach, Fla.), 2016, 28(18): 3467-3472. |
16 | Chen C, Tse Y L S, Lindberg G E, et al. Hydroxide solvation and transport in anion exchange membranes[J]. Journal of the American Chemical Society, 2016, 138(3): 991-1000. |
17 | He Y B, Wu L, Pan J F, et al. A mechanically robust anion exchange membrane with high hydroxide conductivity[J]. Journal of Membrane Science, 2016, 504: 47-54. |
18 | Zhang J J, He Y B, Zhang K Y, et al. Cation-dipole interaction that creates ordered ion channels in an anion exchange membrane for fast OH- conduction[J]. AIChE Journal, 2021, 67(4): e17133. |
19 | Chen D Y, Hickner M A. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s[J]. Macromolecules, 2013, 46(23): 9270-9278. |
20 | Yu D B, Ge L, Wei X L, et al. A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2017, 5(32): 16865-16872. |
21 | Wu C M, Wu Y H, Luo J Y, et al. Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process[J]. Journal of Membrane Science, 2010, 356(1/2): 96-104. |
22 | Yu D B, Wu B, Ran J, et al. An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage[J]. Journal of Materials Chemistry A, 2016, 4(43): 16953-16960. |
23 | Shi C, Liu T, Chen W, et al. Interaction, structure and tensile property of swollen Nafion® membranes[J]. Polymer, 2021, 213: 123224. |
24 | Yu D, Shao Q, Song Q, et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures[J]. Nature Communications, 2020, 11: 927. |
25 | Zhao Y, Liu Y L, Wang C, et al. Electric field-based ionic control of selective separation layers[J]. Journal of Materials Chemistry A, 2020, 8(8): 4244-4251. |
26 | Cui C H, Li H H, Yu J W, et al. Ternary heterostructured nanoparticle tubes: a dual catalyst and its synergistic enhancement effects for O2/H2O2 reduction[J]. Angewandte Chemie (International Ed. in English), 2010, 49(48): 9149-9152. |
27 | Wang C, Krishnan V, Wu D S, et al. Evaluation of the microstructure of dry and hydrated perfluorosulfonic acid ionomers: microscopy and simulations[J]. J. Mater. Chem. A, 2013, 1(3): 938-944. |
28 | Uchida Y, Uyama H, Minakuchi A, et al. Phase-field simulation with semi-empirical and effective parameters in a case study from PVA membrane syntheses by phase separation and drying process[J]. Journal of Chemical Engineering of Japan, 2021, 54(11): 612-619. |
29 | Ge Q Q, Ning Y F, Wu L, et al. Enhancing acid recovery efficiency by implementing oligomer ionic bridge in the membrane matrix[J]. Journal of Membrane Science, 2016, 518: 263-272. |
30 | Mondal A N, He Y B, Wu L, et al. Click mediated high-performance anion exchange membranes with improved water uptake[J]. Journal of Materials Chemistry A, 2017, 5(3): 1022-1027. |
31 | Mondal A N, Hou J, He Y, et al. Preparation of click-driven cross-linked anion exchange membranes with low water uptake[J]. Particuology, 2020, 48: 65-73. |
32 | Khan M I, Zheng C L, Mondal A N, et al. Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis[J]. Desalination, 2017, 402: 10-18. |
33 | Ran J, Fu C F, Ding L, et al. Dual hydrophobic grafted chains facilitating quaternary ammonium aggregations of hydroxide conducting polymers: a theoretical and experimental investigation[J]. Journal of Materials Chemistry A, 2018, 6(14): 5714-5723. |
34 | Ran J, Ding L, Chu C Q, et al. Highly conductive and stabilized side-chain-type anion exchange membranes: ideal alternatives for alkaline fuel cell applications[J]. Journal of Materials Chemistry A, 2018, 6(35): 17101-17110. |
35 | Wang J H, Gu S, Xiong R C, et al. Structure-property relationships in hydroxide-exchange membranes with cation strings and high ion-exchange capacity[J]. ChemSusChem, 2015, 8(24): 4229-4234. |
36 | Lee W H, Mohanty A D, Bae C. Fluorene-based hydroxide ion conducting polymers for chemically stable anion exchange membrane fuel cells[J]. ACS Macro Letters, 2015, 4(4): 453-457. |
37 | Li N W, Leng Y J, Hickner M A, et al. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells[J]. Journal of the American Chemical Society, 2013, 135(27): 10124-10133. |
38 | Dietrich-Buchecker C O, Sauvage J P. A synthetic molecular trefoil knot[J]. Angewandte Chemie (International Ed. in English), 1989, 28(2): 189-192. |
39 | Koumura N, Zijlstra R W J, van Delden R A, et al. Light-driven monodirectional molecular rotor[J]. Nature, 1999, 401(6749): 152-155. |
40 | Kudernac T, Ruangsupapichat N, Parschau M, et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface[J]. Nature, 2011, 479(7372): 208-211. |
41 | Song J, Han O H, Han S. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes[J]. Angewandte Chemie (International Ed. in English), 2015, 54(12): 3615-3620. |
42 | Ge X, He Y, Liang X, et al. Thermally triggered polyrotaxane translational motion helps proton transfer[J]. Nature Communications, 2018, 9: 2297. |
43 | Ge Q Q, Liu Y Z, Yang Z J, et al. Hyper-branched anion exchange membranes with high conductivity and chemical stability[J]. Chemical Communications, 2016, 52(66): 10141-10143. |
44 | Shehzad M A, Wang Y M, Yasmin A, et al. Biomimetic nanocones that enable high ion permselectivity[J]. Angewandte Chemie (International Ed. in English), 2019, 58(36): 12646-12654. |
45 | Zhang Y, Schatz G C. Advantages of conical pores for ion pumps[J]. The Journal of Physical Chemistry C, 2017, 121(1): 161-168. |
46 | Xiao X, Shehzad M A, Yasmin A, et al. Anion permselective membranes with chemically-bound carboxylic polymer layer for fast anion separation[J]. Journal of Membrane Science, 2020, 614: 118553. |
47 | Carta M, Malpass-Evans R, Croad M, et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307. |
48 | Zhou J H, Liu Y H, Zuo P P, et al. Highly conductive and vanadium sieving microporous Tröger's base membranes for vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 620: 118832. |
49 | Yang Z J, Guo R, Malpass-Evans R, et al. Highly conductive anion-exchange membranes from microporous Tröger's base polymers[J]. Angewandte Chemie (International Ed. in English), 2016, 55(38): 11499-11502. |
50 | 葛倩倩, 葛亮, 汪耀明, 等. 离子交换膜的发展态势与应用展望[J]. 化工进展, 2016, 35(6): 1774-1785. |
Ge Q Q, Ge L, Wang Y M, et al. Perspective in ion exchange membranes[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1774-1785. | |
51 | Bakangura E, Cheng C L, Wu L, et al. Highly charged hierarchically structured porous anion exchange membranes with excellent performance[J]. Journal of Membrane Science, 2016, 515: 154-162. |
52 | Bakangura E, Cheng C L, Wu L, et al. Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation[J]. Journal of Membrane Science, 2017, 537: 32-41. |
53 | Afsar N U, Ge X, Zhao Z, et al. Zwitterion membranes for selective cation separation via electrodialysis[J]. Separation and Purification Technology, 2021, 254: 117619. |
54 | Emmanuel K, Cheng C L, Mondal A N, et al. Covalently cross-linked pyridinium based AEMs with aromatic pendant groups for acid recovery via diffusion dialysis[J]. Separation and Purification Technology, 2016, 164: 125-131. |
55 | Emmanuel K, Erigene B, Cheng C L, et al. Facile synthesis of pyridinium functionalized anion exchange membranes for diffusion dialysis application[J]. Separation and Purification Technology, 2016, 167: 108-116. |
56 | Emmanuel K, Cheng C L, Erigene B, et al. Novel synthetic route to prepare doubly quaternized anion exchange membranes for diffusion dialysis application[J]. Separation and Purification Technology, 2017, 189: 204-212. |
57 | Mondal A N, Cheng C L, Khan M I, et al. Improved acid recovery performance by novel poly(DMAEM-co-γ-MPS) anion exchange membrane via diffusion dialysis[J]. Journal of Membrane Science, 2017, 525: 163-174. |
58 | Irfan M, Afsar N U, Bakangura E, et al. Development of novel PVA-QUDAP based anion exchange membranes for diffusion dialysis and theoretical analysis therein[J]. Separation and Purification Technology, 2017, 178: 269-278. |
59 | Irfan M, Bakangura E, Afsar N U, et al. Augmenting acid recovery from different systems by novel Q-DAN anion exchange membranes via diffusion dialysis[J]. Separation and Purification Technology, 2018, 201: 336-345. |
60 | Mondal A N, He Y B, Ge L, et al. Preparation and characterization of click-driven N-vinylcarbazole-based anion exchange membranes with improved water uptake for fuel cells[J]. RSC Advances, 2017, 7(47): 29794-29805. |
61 | Mondal A N, Zheng C L, Cheng C L, et al. Novel silica-functionalized aminoisophthalic acid-based membranes for base recovery via diffusion dialysis[J]. Journal of Membrane Science, 2016, 507: 90-98. |
62 | Dai C H, Mondal A N, Wu L, et al. Crosslinked PVA-based hybrid membranes containing di-sulfonic acid groups for alkali recovery[J]. Separation and Purification Technology, 2017, 184: 1-11. |
63 | Afsar N U, Yu D B, Cheng C L, et al. Fabrication of cation exchange membrane from polyvinyl alcohol using lignin sulfonic acid: applications in diffusion dialysis process for alkali recovery[J]. Separation Science and Technology, 2017, 52(6): 1106-1113. |
64 | Wei Y, Pastuovic Z, Murphy T, et al. Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation[J]. Applied Surface Science, 2020, 505: 144651. |
65 | Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics[J]. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(22): 2392-2415. |
66 | Kim F, Cote L J, Huang J X. Graphene oxide: surface activity and two-dimensional assembly[J]. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(17): 1954-1958. |
67 | Ran J, Chu C Q, Pan T, et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes[J]. Journal of Materials Chemistry A, 2019, 7(14): 8085-8091. |
68 | 葛亮, 伍斌, 王鑫, 等. MOFs分离膜在水系分离中的应用[J]. 化工学报, 2019, 70(10): 3748-3763. |
Ge L, Wu B, Wang X, et al. Application in water system separation of MOFs separation membranes[J]. CIESC Journal, 2019, 70(10): 3748-3763. | |
69 | Liu C, Luo T Y, Feura E S, et al. Orthogonal ternary functionalization of a mesoporous metal-organic framework via sequential postsynthetic ligand exchange[J]. Journal of the American Chemical Society, 2015, 137(33): 10508-10511. |
70 | Park J, Feng D W, Zhou H C. Dual exchange in PCN-333: a facile strategy to chemically robust mesoporous chromium metal-organic framework with functional groups[J]. Journal of the American Chemical Society, 2015, 137(36): 11801-11809. |
71 | Férey G. Hybrid porous solids: past, present, future[J]. Chemical Society Reviews, 2008, 37(1): 191-214. |
72 | Wu B, Ge L, Yu D B, et al. Cationic metal-organic framework porous membranes with high hydroxide conductivity and alkaline resistance for fuel cells[J]. Journal of Materials Chemistry A, 2016, 4(38): 14545-14549. |
73 | Xu T T, Shehzad M A, Yu D B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597. |
74 | Steele B C, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352. |
75 | Zhang H W, Shen P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chemical Reviews, 2012, 112(5): 2780-2832. |
76 | Yin Y, Yamada O, Tanaka K, et al. On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications[J]. Polymer Journal, 2006, 38(3): 197-219. |
77 | Yan J L, Liu C P, Wang Z, et al. Water resistant sulfonated polyimides based on 4, 4'-binaphthyl-1, 1', 8, 8'-tetracarboxylic dianhydride (BNTDA) for proton exchange membranes[J]. Polymer, 2007, 48(21): 6210-6214. |
78 | Yao Z L, Zhang Z H, Hu M, et al. Perylene-based sulfonated aliphatic polyimides for fuel cell applications: performance enhancement by stacking of polymer chains[J]. Journal of Membrane Science, 2018, 547: 43-50. |
79 | Zhang M, Kim H K, Chalkova E, et al. New polyethylene based anion exchange membranes (PE-AEMs) with high ionic conductivity[J]. Macromolecules, 2011, 44(15): 5937-5946. |
80 | Tuckerman M E, Marx D, Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution[J]. Nature, 2002, 417(6892): 925-929. |
81 | Irfan M, Bakangura E, Afsar N U, et al. Preparation and performance evaluation of novel alkaline stable anion exchange membranes[J]. Journal of Power Sources, 2017, 355: 171-180. |
82 | Lin B C, Qiu L H, Qiu B, et al. A soluble and conductive polyfluorene ionomer with pendant imidazolium groups for alkaline fuel cell applications[J]. Macromolecules, 2011, 44(24): 9642-9649. |
83 | Hossain M M, Wu L, Liang X, et al. Anion exchange membrane crosslinked in the easiest way stands out for fuel cells[J]. Journal of Power Sources, 2018, 390: 234-241. |
84 | Janoschka T, Martin N, Martin U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527(7576): 78-81. |
85 | Lin K X, Chen Q, Gerhardt M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. |
86 | Hou J Q, Liu Y H, Liu Y Z, et al. Self-healing anion exchange membrane for pH 7 redox flow batteries[J]. Chemical Engineering Science, 2019, 201: 167-174. |
87 | Yuan Z Z, Zhang H M, Li X F. Ion conducting membranes for aqueous flow battery systems[J]. Chemical Communications (Cambridge, England), 2018, 54(55): 7570-7588. |
88 | Xu T T, Sheng F M, Wu B, et al. Ti-exchanged UiO-66—NH2-containing polyamide membranes with remarkable cation permselectivity[J]. Journal of Membrane Science, 2020, 615: 118608. |
89 | Wang H, Wu C M, Wu Y H, et al. Cation exchange hybrid membranes based on PVA for alkali recovery through diffusion dialysis[J]. Journal of Membrane Science, 2011, 376(1/2): 233-240. |
90 | Hao J W, Wu Y H, Xu T W. Cation exchange hybrid membranes prepared from PVA and multisilicon copolymer for application in alkali recovery[J]. Journal of Membrane Science, 2013, 425/426: 156-162. |
[1] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[2] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[3] | Bo MENG, Yanping LIU, Xinke JIANG, Yifan HAN. The scale regulation of Fe5C2-MnO x and their catalytic performance for the preparation of olefins from syngas [J]. CIESC Journal, 2022, 73(6): 2677-2689. |
[4] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[5] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
[6] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[7] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[8] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[9] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[10] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[11] | Pan HUANG, Cheng LIAN, Honglai LIU. Heat-mass transfer in real porous electrode based on simulated annealing algorithm [J]. CIESC Journal, 2022, 73(6): 2529-2542. |
[12] | Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Liquid-liquid two-phase flow and mesoscale effect in parallel microchannels [J]. CIESC Journal, 2022, 73(6): 2563-2572. |
[13] | Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve [J]. CIESC Journal, 2022, 73(6): 2334-2351. |
[14] | Yongli MA, Mingyan LIU, Zongding HU. Development of flow mesoscale modeling of the gas-liquid-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2438-2451. |
[15] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||