CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3679-3687.DOI: 10.11949/0438-1157.20220143
• Energy and environmental engineering • Previous Articles Next Articles
Yafu LI1(), Liangliang FU1,2(), Haolong BAI1, Dingrong BAI1(), Guangwen XU1
Received:
2022-01-25
Revised:
2022-07-14
Online:
2022-09-06
Published:
2022-08-05
Contact:
Liangliang FU, Dingrong BAI
李亚芾1(), 付亮亮1,2(), 白浩隆1, 白丁荣1(), 许光文1
通讯作者:
付亮亮,白丁荣
作者简介:
李亚芾(1997—),女,硕士研究生,18021066785@163.com
基金资助:
CLC Number:
Yafu LI, Liangliang FU, Haolong BAI, Dingrong BAI, Guangwen XU. The simultaneous synthesis of high-quality forsterite and sintered magnesia from magnesite flotation tailings[J]. CIESC Journal, 2022, 73(8): 3679-3687.
李亚芾, 付亮亮, 白浩隆, 白丁荣, 许光文. 菱镁矿浮选尾矿直接合成同时制备镁橄榄石和镁砂研究[J]. 化工学报, 2022, 73(8): 3679-3687.
Add to citation manager EndNote|Ris|BibTeX
研究者 | 原料 | 试样样品形状或尺寸 | 反应温度和时间 | 主要结果 |
---|---|---|---|---|
陈勇等[ | 电熔镁砂细粉和二氧化硅微粉 | Φ 40 mm×25 mm | 1350/1400/1450/1500/1550/1600℃, 5 h | 在最佳MgO和SiO2配比下,仍有少量 SiO2未完全转化;过量MgO阻碍了烧结的进行 |
Ando等[ | 高纯硅粉和电熔镁砂 | Φ 12 mm×6 mm | 1400℃,2 h | 未完全转化的SiO2影响了产物作为超高频电介质的性能 |
丁达飞等[ | 菱镁矿尾矿、硅石粉、硅灰、滑石及高纯镁砂 | Φ 40 mm×130 mm | 1580℃, 5 h | 理论配比条件下仍有3%~10%的MgO未转化成镁橄榄石 |
陈少一等[ | 氢氧化镁和二氧化硅 | Φ 40 mm×50 mm | 1400/1500/1600/1700℃, 3 h | 1500℃及以下超过30%的SiO2未转化成镁橄榄石 |
孟庆新等[ | 菱镁矿细粉和天然硅石粉 | 圆柱试样 (文中未提及具体尺寸) | 1300/1400/1500/1600℃, 3 h | 温度低于1400℃时,物相组成中含有未转化的SiO2 |
Ren等[ | 菱镁矿尾矿与硅废料 | Φ 50×50 mm | 1300/1400/1500/1600℃, 3 h | 硅石对反应过程和产品质量具有较大影响 |
Liu等[ | SiO2和Mg(OH)2材料 | Φ 50×50 mm Φ 25×50 mm | 1500℃,3 h后,再1500/1600/1700℃, 3 h | 在第一段烧结过程中,会生成顽火辉石相,并非全部转化成为镁橄榄石 |
Kullatham等[ | 泰国滑石和菱镁矿 | Φ 15 mm×20 mm | 900/1000/1100/1200/1300℃,1 h | 24 h球磨和5 h活化原料,烧结产物相对密度最高84.59% |
Tan等[ | MgO粉末和 Mg3Si4O10(OH)2粉末 | 圆形球坯 (文中未提及具体尺寸) | 1200~1500℃,2 h | 在1200℃反应2 h,再在1200~1500℃烧结2 h后,才生成产品 |
Table 1 Summary of literature research on forsterite synthesis
研究者 | 原料 | 试样样品形状或尺寸 | 反应温度和时间 | 主要结果 |
---|---|---|---|---|
陈勇等[ | 电熔镁砂细粉和二氧化硅微粉 | Φ 40 mm×25 mm | 1350/1400/1450/1500/1550/1600℃, 5 h | 在最佳MgO和SiO2配比下,仍有少量 SiO2未完全转化;过量MgO阻碍了烧结的进行 |
Ando等[ | 高纯硅粉和电熔镁砂 | Φ 12 mm×6 mm | 1400℃,2 h | 未完全转化的SiO2影响了产物作为超高频电介质的性能 |
丁达飞等[ | 菱镁矿尾矿、硅石粉、硅灰、滑石及高纯镁砂 | Φ 40 mm×130 mm | 1580℃, 5 h | 理论配比条件下仍有3%~10%的MgO未转化成镁橄榄石 |
陈少一等[ | 氢氧化镁和二氧化硅 | Φ 40 mm×50 mm | 1400/1500/1600/1700℃, 3 h | 1500℃及以下超过30%的SiO2未转化成镁橄榄石 |
孟庆新等[ | 菱镁矿细粉和天然硅石粉 | 圆柱试样 (文中未提及具体尺寸) | 1300/1400/1500/1600℃, 3 h | 温度低于1400℃时,物相组成中含有未转化的SiO2 |
Ren等[ | 菱镁矿尾矿与硅废料 | Φ 50×50 mm | 1300/1400/1500/1600℃, 3 h | 硅石对反应过程和产品质量具有较大影响 |
Liu等[ | SiO2和Mg(OH)2材料 | Φ 50×50 mm Φ 25×50 mm | 1500℃,3 h后,再1500/1600/1700℃, 3 h | 在第一段烧结过程中,会生成顽火辉石相,并非全部转化成为镁橄榄石 |
Kullatham等[ | 泰国滑石和菱镁矿 | Φ 15 mm×20 mm | 900/1000/1100/1200/1300℃,1 h | 24 h球磨和5 h活化原料,烧结产物相对密度最高84.59% |
Tan等[ | MgO粉末和 Mg3Si4O10(OH)2粉末 | 圆形球坯 (文中未提及具体尺寸) | 1200~1500℃,2 h | 在1200℃反应2 h,再在1200~1500℃烧结2 h后,才生成产品 |
项目 | MgCO3 | MgO | SiO2 | Al2O3 | Fe2O3 | CaO | |
---|---|---|---|---|---|---|---|
原料A | %(mol) | 68.12 | — | 29.63 | 1.19 | 0.46 | 0.60 |
%(mass) | 74.09 | — | 22.96 | 1.56 | 0.96 | 0.43 | |
原料B | %(mol) | — | 74.34 | 23.01 | 1.29 | 0.25 | 1.11 |
%(mass) | — | 64.96 | 29.97 | 2.86 | 0.86 | 1.35 |
Table 2 Material compositions of samples A and B
项目 | MgCO3 | MgO | SiO2 | Al2O3 | Fe2O3 | CaO | |
---|---|---|---|---|---|---|---|
原料A | %(mol) | 68.12 | — | 29.63 | 1.19 | 0.46 | 0.60 |
%(mass) | 74.09 | — | 22.96 | 1.56 | 0.96 | 0.43 | |
原料B | %(mol) | — | 74.34 | 23.01 | 1.29 | 0.25 | 1.11 |
%(mass) | — | 64.96 | 29.97 | 2.86 | 0.86 | 1.35 |
1 | 陈英春, 周佳芬, 路贵民, 等. 高纯镁砂及氧化镁陶瓷研究进展[J]. 化工进展, 2019, 38(1): 505-515. |
Chen Y C, Zhou J F, Lu G M, et al. A review on the production technologies of high-purity magnesia and magnesium oxide ceramics[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 505-515. | |
2 | Tan C Y, Singh R, Teh Y C, et al. Sinterability of forsterite prepared via solid-state reaction[J]. International Journal of Applied Ceramic Technology, 2015, 12(2): 437-442. |
3 | Guo Z Q, Ma Y, Rigaud M. Sinterability of macrocrystalline and cryptocrystalline magnesite to refractory magnesia[J]. International Journal of Ceramic Engineering & Science, 2020, 2(6): 303-309. |
4 | 王汇平, 崔妍, 曲殿利. 添加La2O3对菱镁矿制备烧结镁砂性能的影响[J]. 耐火材料, 2021, 55(1): 61-63, 68. |
Wang H P, Cui Y, Qu D L. Effect of La2O3 addition on properties of sintered magnesia prepared from magnesite[J]. Refractories, 2021, 55(1): 61-63, 68. | |
5 | 连娜. 利用菱镁矿原矿制备烟气脱硫剂的研究[D]. 鞍山: 辽宁科技大学, 2014. |
Lian N. The use of magnesite in the wet flue gas desulfurization[D]. Anshan: University of Science and Technology Liaoning, 2014. | |
6 | 刘永杰, 孙杰璟, 孟庆凤. 利用菱镁矿尾矿制备镁硅酸盐水泥的研究[J]. 硅酸盐通报, 2013, 32(6): 1126-1130. |
Liu Y J, Sun J J, Meng Q F. Study on magnesite tailing for preparing magnesium silicate cement[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6): 1126-1130. | |
7 | 袁广亮. 镁橄榄石轻质隔热耐火材料制备工艺研究[D]. 西安: 西安建筑科技大学, 2010. |
Yuan G L. Preparation of lightweight refractories of forsterite[D]. Xi'an: Xi'an University of Architecture and Technology, 2010. | |
8 | Douy A. Aqueous syntheses of forsterite (Mg2SiO4) and enstatite (MgSiO3)[J]. Journal of Sol-Gel Science and Technology, 2002, 24(3): 221-228. |
9 | Brindley G W, Hayami R. Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2 [J]. Philosophical Magazine, 1965, 12(117): 505-514. |
10 | Lin L, Yin M, Shi C S, et al. Luminescence properties of a new red long-lasting phosphor: Mg2SiO4: Dy3+, Mn2+ [J]. Journal of Alloys and Compounds, 2008, 455(1/2): 327-330. |
11 | Othman A G M, Khalil N M. Sintering of magnesia refractories through the formation of periclase-forsterite-spinel phases[J]. Ceramics International, 2005, 31(8): 1117-1121. |
12 | 祁欣, 罗旭东, 李振, 等. 高硅菱镁矿的选矿提纯与应用研究进展[J]. 硅酸盐通报, 2021, 40(2): 485-492. |
Qi X, Luo X D, Li Z, et al. Research progress on purification and application of high-silicon magnesite[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 485-492. | |
13 | 陈勇, 于景坤, 高杰. 烧结温度对合成镁橄榄石性能的影响[J]. 硅酸盐通报, 2012, 31(3): 622-625. |
Chen Y, Yu J K, Gao J. Effect of sinterring temperature on the properties of synthetic forsterite[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(3): 622-625. | |
14 | Ando M, Ohsato H, Kagomiya I, et al. Quality factor of forsterite for ultrahigh frequency dielectrics depending on synthesis process[J]. Japanese Journal of Applied Physics, 2008, 47(9): 7729-7731. |
15 | 丁达飞, 李志坚, 栾旭. 用菱镁矿尾矿合成高纯镁橄榄石[C]//2015耐火材料综合学术年会. 论文集( 3). 2015:156-158. |
Ding D F, Li Z J, Luan X. Synthesis of high purity magnesium olivine from magnesite tailings [C]//2015 Refractory Comprehensive Academic Conference. Proceedings ( 3). 2015: 156-158. | |
16 | 陈少一, 刘浩, 王周福, 等. 温度及组成对镁橄榄石合成过程的影响[J]. 陶瓷学报, 2017, 38(5): 621-625. |
Chen S Y, Liu H, Wang Z F, et al. Effects of temperature and composition on the synthesis process of forsterite[J]. Journal of Ceramics, 2017, 38(5): 621-625. | |
17 | 孟庆新, 周宁生, 刘昭, 等. 高纯镁橄榄石质轻质微孔原料的制备[J]. 耐火材料, 2020, 54(1): 56-60. |
Meng Q X, Zhou N S, Liu Z, et al. Preparation of high-purity forsterite light-weight micropore starting materials[J]. Refractories, 2020, 54(1): 56-60. | |
18 | Ren X M, Ma B Y, Fu G F, et al. Facile synthesis of MgO-Mg2SiO4 composite ceramics with high strength and low thermal conductivity[J]. Ceramics International, 2021, 47(14): 19959-19969. |
19 | Liu H, Jie C, Ma Y, et al. Synthesis and processing effects on microstructure and mechanical properties of forsterite ceramics[J]. Transactions of the Indian Ceramic Society, 2020, 79(2): 83-87. |
20 | Kullatham S, Synthesis Thiansem S., characterization and properties of forsterite refractory produced from Thai talc and magnesite[J]. Materials Science Forum, 2018, 940: 46-50. |
21 | Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures(Ⅰ): Matrix-Flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 1974, 7(6): 519-525. |
22 | Chung F H. Quantitative interpretation of X-ray diffraction patterns of mixtures(Ⅱ): Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 1974, 7(6): 526-531. |
23 | 单小兵, 张其土, 李玉华. X射线K值法在水泥物相中的应用[J]. 理化检验(物理分册), 2002, 38(8): 342-345. |
Shan X B, Zhang Q T, Li Y H. Application of XRD K value method in cement[J]. Physical Testing and Chemical Analysis Parta Physical Testing, 2002, 38(8): 342-345. | |
24 | 范国宁, 韩萍. X射线衍射K值法测定加氢催化剂及载体中二氧化钛的含量[J]. 化学工程师, 2014, 28(11): 20-22, 64. |
Fan G N, Han P. Determination of TiO2 content in hydrogenation catalyst and its carrier using K value method of X-ray diffraction[J]. Chemical Engineer, 2014, 28(11): 20-22, 64. | |
25 | 王雷雷, 王勤隆, 李晶, 等. X射线衍射法测定纳米氧化铝的平均晶粒尺寸[J]. 无机盐工业, 2021, 53(4): 86-89. |
Wang L L, Wang Q L, Li J, et al. Determination of average grain size of nano-alumina by X-ray diffraction method[J]. Inorganic Chemicals Industry, 2021, 53(4): 86-89. |
[1] | Guilong XIONG, Jingwen XIE, Linjun YANG. Numerical simulation of effect of roughness on heterogeneous nucleation of water vapor on fine particle surface [J]. CIESC Journal, 2021, 72(8): 4304-4313. |
[2] | Tingfang YU, Ju GAO, Guilong XIONG, Shuiqing LI, Qiang YAO. Numerical simulation of heterogeneous nucleation of water vapor on surface of fine particles based on molecular kinetics [J]. CIESC Journal, 2020, 71(7): 3071-3079. |
[3] | Jian WANG,Ling PAN,Shuai WANG,Hao ZHANG. Analysis of ultrafine particles growth and removal in phase-transition agglomerator for engineering [J]. CIESC Journal, 2020, 71(11): 5090-5098. |
[4] | WU Jiandong, LIU Qiao, WANG Hao. Experimental investigation of fine particle precipitation in rectangular duct with staggered baffles [J]. CIESC Journal, 2018, 69(S1): 15-19. |
[5] | HOU Dawei, PAN Danping, ZHOU Xincheng, HUANG Rongting, SHEN Kai, YANG Linjun. Relationship between fine particle emission and droplets during limestone-gypsum WFGD process [J]. CIESC Journal, 2018, 69(4): 1714-1722. |
[6] | LIU Daoyin, WANG Yuanbao, WANG Zheng, CHEN Xiaoping. Minimum fluidization velocity of ultrafine particle agglomerates [J]. CIESC Journal, 2017, 68(11): 4105-4111. |
[7] | ZHENG Jianxiang, XU Shuai, WANG Jingyang, SHI Mengyi, WANG Long. Simulation of ultrafine particle aggregation in aggregation device by differential-algebraic quadrature method of moments [J]. CIESC Journal, 2017, 68(1): 119-128. |
[8] | PAN Danping, GUO Yanpeng, HUANG Rongting, SHENG Yi, YANG Linjun. Formation of fine particles in flue gas desulphurization process using limestone-gypsum [J]. CIESC Journal, 2015, 66(11): 4618-4625. |
[9] | YAN Jinpei, CHEN Liqi, YANG Linjun. Agglomeration removal of fine particles at super-saturation steam by using acoustic wave [J]. CIESC Journal, 2014, 65(8): 3243-3249. |
[10] | SHA Yan, YANG Linjun, CHEN Hao, QU Rumin. Effect of fine particles and coexistent gaseous components in flue gas on CO2 absorption [J]. CIESC Journal, 2013, 64(4): 1293-1299. |
[11] | JIANG Jianzhun,ZHANG Mingsen,KE Li,YANG Jing,WANG Huanru,HUANG Wenqing. Synthesis and characterization of ultra-fine ZSM-5 zeolite [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 1980-1984. |
[12] | ZHANG Mingjun,FAN Fengxian. Progress and prospect in numerical simulation on acoustic agglomeration of fine particles [J]. Chemical Industry and Engineering Progree, 2012, 31(08): 1671-1676. |
[13] | LI Jianlong, CHEN Guanghui, ZHANG Pan, WANG Weiwen, DUAN Jihai. Technical Challenges and Progress in Fluidized Bed Chemical Vapor Deposition of Polysilicon [J]. , 2011, 19(5): 747-753. |
[14] | FAN Fengxian,YANG Linjun, YUAN Zhulin. Progress and prospect in the study of heterogeneous nucleation of vapor on fine particles [J]. , 2009, 28(9): 1496-. |
[15] | YANG Zongyang,HU Tingting,LE Yuan,LIU Miao,SHEN Zhigang,CHEN Jianfeng. Preparation of ultrafine sumatriptan succinate for dry powder inhalation via reactive crystallization [J]. , 2008, 27(9): 1412-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||