CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 617-629.DOI: 10.11949/0438-1157.20221223
• Reviews and monographs • Previous Articles Next Articles
Weiyi SU1,2(), Jiahui DING1,2, Chunli LI1,2, Honghai WANG1,2, Yanjun JIANG1,2()
Received:
2022-09-07
Revised:
2022-11-18
Online:
2023-03-21
Published:
2023-02-05
Contact:
Yanjun JIANG
苏伟怡1,2(), 丁佳慧1,2, 李春利1,2, 王洪海1,2, 姜艳军1,2()
通讯作者:
姜艳军
作者简介:
苏伟怡(1985—),女,博士,副教授,suweiyi@hebut.edu.cn
基金资助:
CLC Number:
Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization[J]. CIESC Journal, 2023, 74(2): 617-629.
苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629.
Add to citation manager EndNote|Ris|BibTeX
酶 | 目标产物 | 结晶方式 | 调控参数 | 产率 | 文献 |
---|---|---|---|---|---|
转氨酶 | 1-苯基乙胺 | 加成盐剂 | 75% | [ | |
加成盐剂 | pH、温度 | 91.5% | [ | ||
(S)-1-(3-甲氧基苯基)乙胺 | 加成盐剂 | 晶种 | [ | ||
加成盐剂 | 晶种 | [ | |||
3-(2-萘)- l -丙氨酸 | 自发结晶 | 温度 | 93% | [ | |
L-邻苯丙氨酸 | 自发结晶 | pH | [ | ||
青霉素G酰化酶 | 氨苄西林 | 自发结晶 | 93% | [ | |
自发结晶 | 97% | [ | |||
自发结晶 | pH | 96% | [ | ||
加入晶种 | 晶种 | [ | |||
自发结晶 | 晶种、pH | [ | |||
自发结晶 | pH | 98% | [ | ||
阿莫西林 | 自发结晶 | pH | 98% | [ | |
头孢氨苄 | 加络合剂 | 温度、pH | [ | ||
头孢克洛 | 加络合剂 | 温度、pH | 80% | [ | |
头孢拉定 | 加络合剂 | [ | |||
葡萄糖氧化酶 | 葡萄糖酸钙 | 自发结晶 | 温度、pH | [ | |
氨基酸消旋酶 | 苏氨酸 | 自发结晶 | [ | ||
芳香酸脱羧酶 | 2,6-二羟基苯甲酸 | 加成盐剂 | 97% | [ | |
嗜热菌蛋白酶 | Z-阿斯巴甜 | 自发结晶 | pH | 88% | [ |
延胡索酸酶 | L-苹果酸钙 | 自发结晶 | 温度 | [ |
Table 1 Summary of the realization and regulation of enzymatic reaction crystallization
酶 | 目标产物 | 结晶方式 | 调控参数 | 产率 | 文献 |
---|---|---|---|---|---|
转氨酶 | 1-苯基乙胺 | 加成盐剂 | 75% | [ | |
加成盐剂 | pH、温度 | 91.5% | [ | ||
(S)-1-(3-甲氧基苯基)乙胺 | 加成盐剂 | 晶种 | [ | ||
加成盐剂 | 晶种 | [ | |||
3-(2-萘)- l -丙氨酸 | 自发结晶 | 温度 | 93% | [ | |
L-邻苯丙氨酸 | 自发结晶 | pH | [ | ||
青霉素G酰化酶 | 氨苄西林 | 自发结晶 | 93% | [ | |
自发结晶 | 97% | [ | |||
自发结晶 | pH | 96% | [ | ||
加入晶种 | 晶种 | [ | |||
自发结晶 | 晶种、pH | [ | |||
自发结晶 | pH | 98% | [ | ||
阿莫西林 | 自发结晶 | pH | 98% | [ | |
头孢氨苄 | 加络合剂 | 温度、pH | [ | ||
头孢克洛 | 加络合剂 | 温度、pH | 80% | [ | |
头孢拉定 | 加络合剂 | [ | |||
葡萄糖氧化酶 | 葡萄糖酸钙 | 自发结晶 | 温度、pH | [ | |
氨基酸消旋酶 | 苏氨酸 | 自发结晶 | [ | ||
芳香酸脱羧酶 | 2,6-二羟基苯甲酸 | 加成盐剂 | 97% | [ | |
嗜热菌蛋白酶 | Z-阿斯巴甜 | 自发结晶 | pH | 88% | [ |
延胡索酸酶 | L-苹果酸钙 | 自发结晶 | 温度 | [ |
Fig.2 In situ product crystallization (ISPC) was combined with the reaction catalyzed by aminotransferase to form insoluble 1-phenylethylamine salt[18]
Fig.3 Schematic diagram of a transaminases-catalyzed continuous reaction process [containing the dissolution of donor salts (left) and crystallization of the product salts (right)][20]
Fig.5 The schematic pathway for the creation of supersaturated solution(solid line is the thermodynamic solubility of 6-APA, and point 3 corresponds to 6-APA concentration in a supersaturated solution)[48]
Fig.7 Flow chart of cefaclor enzymatic reactive crystallization (complexation crystallization) (left is the composite reactor, and right is the enzyme reactor)[32]
1 | Sheldon R A, van Rantwijk F. Biocatalysis for sustainable organic synthesis[J]. Australian Journal of Chemistry, 2004, 57(4): 281. |
2 | Choi J M, Han S S, Kim H S. Industrial applications of enzyme biocatalysis: current status and future aspects[J]. Biotechnology Advances, 2015, 33(7): 1443-1454. |
3 | Sheldon R A, Brady D. The limits to biocatalysis: pushing the envelope[J]. Chemical Communications, 2018, 54(48): 6088-6104. |
4 | Valeur E, Guéret S M, Adihou H, et al. New modalities for challenging targets in drug discovery[J]. Angewandte Chemie International Edition, 2017, 56(35): 10294-10323. |
5 | Garrido-del Solo C, Moruno M A, Havsteen B H, et al. The kinetic effect of product instability in a Michaelis-Menten mechanism with competitive inhibition[J]. Biosystems, 2000, 56(2/3): 75-82. |
6 | Satyawali Y, Vanbroekhoven K, Dejonghe W. Process intensification: the future for enzymatic processes? [J]. Biochemical Engineering Journal, 2017, 121: 196-223. |
7 | Schügerl K, Hubbuch J. Integrated bioprocesses[J]. Current Opinion in Microbiology, 2005, 8(3): 294-300. |
8 | Woodley J M. Bioprocess intensification for the effective production of chemical products[J]. Computers & Chemical Engineering, 2017, 105: 297-307. |
9 | McDonald M A, Salami H, Harris P R, et al. Reactive crystallization: a review[J]. Reaction Chemistry & Engineering, 2021, 6(3): 364-400. |
10 | Berry D A, Ng K M. Synthesis of reactive crystallization processes[J]. AIChE Journal, 1997, 43(7): 1737-1750. |
11 | Fellechner O, Blatkiewicz M, Smirnova I. Reactive separations for in situ product removal of enzymatic reactions: a review[J]. Chemie Ingenieur Technik, 2019, 91(11): 1522-1543. |
12 | Hülsewede D, Meyer L E, von Langermann J. Application of in situ product crystallization and related techniques in biocatalytic processes[J]. Chemistry - A European Journal, 2019, 25(19): 4871-4884. |
13 | Takamatsu S, Ryu D D Y. Recirculating bioreactor-separator system for simultaneous biotransformation and recovery of product: immobilized L-aspartate β-decarboxylase reactor system[J]. Biotechnology and Bioengineering, 1988, 32(2): 184-191. |
14 | Takamatsu S, Ryu D D Y. New recirculating bioreactor-separator combination system for continuous bioconversion and separation of products[J]. Enzyme and Microbial Technology, 1988, 10(10): 593-600. |
15 | Renuka Devi K, Srinivasan K. A novel approach to understand the nucleation kinetics of α and γ polymorphs of glycine from aqueous solution in the presence of a selective additive through charge compensation mechanism[J]. CrystEngComm, 2014, 16(4): 707-722. |
16 | Black J F B, Cruz-Cabeza A J, Davey R J, et al. The kinetic story of tailor-made additives in polymorphic systems: new data and molecular insights for p-aminobenzoic acid[J]. Crystal Growth & Design, 2018, 18(12): 7518-7525. |
17 | Morissette S L, Almarsson Ö, Peterson M L, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids[J]. Advanced Drug Delivery Reviews, 2004, 56(3): 275-300. |
18 | Hülsewede D, Tänzler M, Süss P, et al. Development of an in situ-product crystallization (ISPC)-concept to shift the reaction equilibria of selected amine transaminase-catalyzed reactions[J]. European Journal of Organic Chemistry, 2018, 2018(18): 2130-2133. |
19 | Hülsewede D, Dohm J N, von Langermann J. Donor amine salt-based continuous in situ-product crystallization in amine transaminase-catalyzed reactions[J]. Advanced Synthesis and Catalysis, 2019, 361(11): 2727-2733. |
20 | Hülsewede D, Temmel E, Kumm P, et al. Concept study for an integrated reactor-crystallizer process for the continuous biocatalytic synthesis of (S)-1-(3-methoxyphenyl)ethylamine[J]. Crystals, 2020, 10(5): 345. |
21 | Neuburger J, Helmholz F, Tiedemann S, et al. Implementation and scale-up of a semi-continuous transaminase-catalyzed reactive crystallization for the preparation of (S)-(3-methoxyphenyl)ethylamine[J]. Chemical Engineering and Processing - Process Intensification, 2021, 168: 108578. |
22 | Hanzawa S, Oe S, Tokuhisa K, et al. Chemo-enzymatic synthesis of 3-(2-naphthyl)- l-alanine by an aminotransferase from the extreme thermophile, thermococcus profundus [J]. Biotechnology Letters, 2001, 23(8): 589-591. |
23 | Cho B K, Seo J H, Kang T W, et al. Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase[J]. Biotechnology and Bioengineering, 2003, 83(2): 226-234. |
24 | Youshko M I, van Langen L M, de Vroom E, et al. Penicillin acylase-catalyzed synthesis of ampicillin in“aqueous solution-precipitate”systems. High substrate concentration and supersaturation effect[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 10(5): 509-515. |
25 | Youshko M I, van Langen L M, de Vroom E, et al. Highly efficient synthesis of ampicillin in an“aqueous solution-precipitate”system: repetitive addition of substrates in a semicontinuous process[J]. Biotechnology and Bioengineering, 2001, 73(5): 426-430. |
26 | Youshko M I, van Langen L M, de Vroom E, et al. Penicillin acylase-catalyzed ampicillin synthesis using a pH gradient: a new approach to optimization[J]. Biotechnology and Bioengineering, 2002, 78(5): 589-593. |
27 | Encarnación-Gómez L G, Bommarius A S, Rousseau R W. Reactive crystallization of β-lactam antibiotics: strategies to enhance productivity and purity of ampicillin[J]. Reaction Chemistry & Engineering, 2016, 1(3): 321-329. |
28 | McDonald M A, Bommarius A S, Rousseau R W. Enzymatic reactive crystallization for improving ampicillin synthesis[J]. Chemical Engineering Science, 2017, 165: 81-88. |
29 | McDonald M A, Bommarius A S, Grover M A, et al. Continuous reactive crystallization of β-lactam antibiotics catalyzed by penicillin G acylase (Part Ⅱ): Case study on ampicillin and product purity[J]. Computers & Chemical Engineering, 2019, 126: 332-341. |
30 | McDonald M A, Bommarius A S, Rousseau R W, et al. Continuous reactive crystallization of β-lactam antibiotics catalyzed by penicillin G acylase(Part Ⅰ): Model development[J]. Computers & Chemical Engineering, 2019, 123: 331-343. |
31 | Schroën C G P H, Nierstrasz V A, Bosma R, et al. In situ product removal during enzymatic cephalexin synthesis by complexation[J]. Enzyme and Microbial Technology, 2002, 31(3): 264-273. |
32 | Yang L, Wei D Z, Zhang Y W. Semi-continuous enzymatic synthesis of cefaclor enhanced by in situ product removal[J]. Journal of Chemical Technology & Biotechnology, 2004, 79(5): 480-485. |
33 | Kemperman G J, Dommerholt F J, Zwanenburg B, et al. Complexants for the clathration mediated synthesis of the antibiotic cephradine[J]. Green Chemistry, 2001, 3(4): 189-192. |
34 | Bao J, Koumatsu K, Furumoto K, et al. Optimal operation of an integrated bioreaction-crystallization process for continuous production of calcium gluconate using external loop airlift columns[J]. Chemical Engineering Science, 2001, 56(21/22): 6165-6170. |
35 | Würges K, Mackfeld U, Pohl M, et al. An efficient route to both enantiomers of allo-threonine by simultaneous amino acid racemase-catalyzed isomerization of threonine and crystallization[J]. Advanced Synthesis & Catalysis, 2011, 353(13): 2431-2438. |
36 | Ren J, Yao P Y, Yu S S, et al. An unprecedented effective enzymatic carboxylation of phenols[J]. ACS Catalysis, 2016, 6(2): 564-567. |
37 | Halling P J, Eichhorn U, Kuhl P, et al. Thermodynamics of solid-to-solid conversion and application to enzymic peptide synthesis[J]. Enzyme and Microbial Technology, 1995, 17(7): 601-606. |
38 | Furui M, Sakata N, Otsuki O, et al. A bioreactor-crystallizer for L-malic acid production[J]. Biocatalysis, 1988, 2(1): 69-77. |
39 | Rehn G, Adlercreutz P, Grey C. Supported liquid membrane as a novel tool for driving the equilibrium of ω-transaminase catalyzed asymmetric synthesis[J]. Journal of Biotechnology, 2014, 179: 50-55. |
40 | Gundersen M T, Abu R, Schürmann M, et al. Amine donor and acceptor influence on the thermodynamics of ω-transaminase reactions[J]. Tetrahedron: Asymmetry, 2015, 26(10/11): 567-570. |
41 | Berge S M, Bighley L D, Monkhouse D C. Pharmaceutical salts[J]. Journal of Pharmaceutical Sciences, 1977, 66(1): 1-19. |
42 | Black S N, Collier E A, Davey R J, et al. Structure, solubility, screening, and synthesis of molecular salts[J]. Journal of Pharmaceutical Sciences, 2007, 96(5): 1053-1068. |
43 | Buque-Taboada E M, Straathof A J J, Heijnen J J, et al. In situ product removal using a crystallization loop in asymmetric reduction of 4-oxoisophorone by Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2004, 86(7): 795-800. |
44 | Zhang J L, Liu A Y, Han Y, et al. Effects of self-assembled monolayers on selective crystallization of tolbutamide[J]. Crystal Growth & Design, 2011, 11(12): 5498-5506. |
45 | Yang X C, Sarma B, Myerson A S. Polymorph control of micro/nano-sized mefenamic acid crystals on patterned self-assembled monolayer Islands[J]. Crystal Growth & Design, 2012, 12(11): 5521-5528. |
46 | Marešová H, Plačková M, Grulich M, et al. Current state and perspectives of penicillin G acylase-based biocatalyses[J]. Applied Microbiology and Biotechnology, 2014, 98(7): 2867-2879. |
47 | Kurochkina V B, Nys P S. Kinetic and thermodynamic approach to design of processes for enzymatic synthesis of betalactams[J]. Biocatalysis and Biotransformation, 2002, 20(1): 35-41. |
48 | Youshko M I, Moody H M, Bukhanov A L, et al. Penicillin acylase-catalyzed synthesis of β-lactam antibiotics in highly condensed aqueous systems: beneficial impact of kinetic substrate supersaturation[J]. Biotechnology and Bioengineering, 2004, 85(3): 323-329. |
49 | Youshko M I, Chilov G G, Shcherbakova T A, et al. Quantitative characterization of the nucleophile reactivity in penicillin acylase-catalyzed acyl transfer reactions[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2002, 1599(1/2): 134-140. |
50 | Giordano R C, Ribeiro M P A, Giordano R L C. Kinetics of beta-lactam antibiotics synthesis by penicillin G acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization[J]. Biotechnology Advances, 2006, 24(1): 27-41. |
51 | Encarnación-Gómez L G, Bommarius A S, Rousseau R W. Crystallization kinetics of ampicillin using online monitoring tools and robust parameter estimation[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2153-2162. |
52 | Ottens M, Lebreton B, Zomerdijk M, et al. Crystallization kinetics of ampicillin[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4821-4827. |
53 | Yuan Y, Zhai R, Li Y, et al. Developing fast enzyme recycling strategy through elucidating enzyme adsorption kinetics on alkali and acid pretreated corn stover[J]. Biotechnology for Biofuels, 2018, 11: 316. |
54 | McDonald M, Marshall G D, Bommarius A S, et al. Crystallization kinetics of cephalexin monohydrate in the presence of cephalexin precursors[J]. Crystal Growth & Design, 2019, 19(9): 5065-5074. |
55 | McDonald M A, Bommarius A S, Grover M A, et al. Direct observation of growth rate dispersion in the enzymatic reactive crystallization of ampicillin[J]. Processes, 2019, 7(6): 390. |
56 | Kubota N, Yokota M, Mullin J W. Supersaturation dependence of crystal growth in solutions in the presence of impurity[J]. Journal of Crystal Growth, 1997, 182(1/2): 86-94. |
57 | Ottens M, Lebreton B, Zomerdijk M, et al. Impurity effects on the crystallization kinetics of ampicillin[J]. Industrial & Engineering Chemistry Research, 2004, 43(24): 7932-7938. |
58 | Salami H, McDonald M A, Bommarius A S, et al. In situ imaging combined with deep learning for crystallization process monitoring: application to cephalexin production[J]. Organic Process Research & Development, 2021, 25(7): 1670-1679. |
59 | Salami H, Lagerman C E, Harris P R, et al. Model development for enzymatic reactive crystallization of β-lactam antibiotics: a reaction-diffusion-crystallization approach[J]. Reaction Chemistry & Engineering, 2020, 5(11): 2064-2080. |
60 | Bhagat A A S. Inertial microfluidics for particle separation and filtration[D]. Cincinnati: University of Cincinnati, 2009. |
61 | Ferreira A L O, Giordano R L C, Giordano R C. Nonconventional reactor for enzymatic synthesis of semi-synthetic β-lactam antibiotics[J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7695-7702. |
62 | Giordano R L C, Giordano R C, Cooney C L. Performance of a continuous Taylor-Couette-Poiseuille vortex flow enzymic reactor with suspended particles[J]. Process Biochemistry, 2000, 35(10): 1093-1101. |
63 | Nguyen A T, Kim J M, Chang S M, et al. Taylor vortex effect on phase transformation of guanosine 5-monophosphate in drowning-out crystallization[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4865-4872. |
64 | Kim J M, Chang S M, Chang J H, et al. Agglomeration of nickel/cobalt/manganese hydroxide crystals in Couette-Taylor crystallizer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1/2/3): 31-39. |
65 | Giordano R, Giordano R, Ferreira A. Process for protection of insoluble enzymatic biocatalysts, biocatalyst obtained thereof and bioreactor with the immobilized biocatalyst: US10536426[P]. 2003-11-24. |
66 | Salami H, Harris P R, Yu D C, et al. Periodic wet milling as a solution to size-based separation of crystal products from biocatalyst for continuous reactive crystallization[J]. Chemical Engineering Research and Design, 2022, 177: 473-483. |
67 | 林家伟, 石鹏, 龚俊波, 等. 表面诱导药物多晶型成核的研究进展[J]. 化工学报, 2021, 72(2): 814-827. |
Lin J W, Shi P, Gong J B, et al. Progress on surface-induced nucleation of drug for controlling polymorphism[J]. CIESC Journal, 2021, 72(2): 814-827. | |
68 | Eichhorn U, Bommarius A S, Drauz K, et al. Synthesis of dipeptides by suspension-to-suspension conversion via thermolysin catalysis: from analytical to preparative scale[J]. Journal of Peptide Science, 1997, 3(4): 245-251. |
69 | Pesci L, Glueck S M, Gurikov P, et al. Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis[J]. The FEBS Journal, 2015, 282(7): 1334-1345. |
70 | Nakao K, Kiefner A, Furumoto K, et al. Production of gluconic acid with immobilized glucose oxidase in airlift reactors[J]. Chemical Engineering Science, 1997, 52(21/22): 4127-4133. |
71 | Yoshimoto M, Wang S Q, Arimatsu Y, et al. A kinetic model for glucose oxidation catalyzed by immobilized glucose oxidase-containing liposomes in a mini-scale external loop airlift bubble column[J]. Journal of Chemical Engineering of Japan, 2004, 37(8): 1012-1018. |
72 | Yoshimoto M, Furumoto K, Nakao K. Effects of bubble interactions in circulating liquid flow on liquid phase mass transfer coefficient in an external loop airlift bubble column[J]. Journal of Chemical Engineering of Japan, 2012, 45(9): 661-665. |
73 | Nakao K, Bao J, Harada T, et al. Measurement and prediction of axial distribution of immobilized glucose oxidase gel beads suspended in bubble column[J]. Journal of Chemical Engineering of Japan, 2000, 33(5): 721-729. |
74 | Harris P R, Grover M A, Rousseau R W, et al. Selectivity and kinetic modeling of penicillin G acylase variants for the synthesis of cephalexin under a broad range of substrate concentrations[J]. Biotechnology and Bioengineering, 2022, 119(11): 3117-3126. |
75 | Lagerman C E, Grover M A, Rousseau R W, et al. Kinetic model development for α-amino ester hydrolase (AEH)-catalyzed synthesis of β-lactam antibiotics[J]. Chemical Engineering Journal, 2021, 426: 131816. |
[1] | Pengcheng JING, Litao CHEN, Chuanliang YAN, Chuanxiang JIANG, Yuxiang XIA, Changhong YU, Haotian WANG. Study on growth process of semiclathrate hydrate on the surface of TBAB solution droplets suspended by ultrasonic [J]. CIESC Journal, 2022, 73(11): 4893-4902. |
[2] | Haifeng ZHENG, Shengzhe JIA, Songcheng WANG, Rui HAN, Dandan HAN, Zhenguo GAO, Junbo GONG. Advances in crystallization of ultrafine crystals [J]. CIESC Journal, 2022, 73(10): 4285-4297. |
[3] | Bo JING, Zewei CHANG, Shengzhe JIA, Songgu WU, Mingyang CHEN, Zhenguo GAO, Junbo GONG. Process intensification of melt crystallization [J]. CIESC Journal, 2021, 72(8): 3907-3918. |
[4] | WANG Dongbo, ZHANG Leilei, ZHAI Jinghuan, ZHANG Lijuan, LIU Xijian, ZHU Xueyan, LU Jie. Study on the crystallization thermodynamics and chiral resolution of penicillamine [J]. CIESC Journal, 2021, 72(4): 1885-1894. |
[5] | Xiaobin JIANG, Guoxin SUN, Gaohong HE. Research progress of high-efficiency membrane distillation crystallization process [J]. CIESC Journal, 2020, 71(9): 3905-3918. |
[6] | Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Crystallization thermodynamics of L-phenylalanine in methanol-water solvent [J]. CIESC Journal, 2019, 70(4): 1255-1262. |
[7] | Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Solubility and ternary phase diagram of azithromycin dihydrate in water-organic solvent [J]. CIESC Journal, 2019, 70(3): 817-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||