CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 14-28.DOI: 10.11949/0438-1157.20221077
• Reviews and monographs • Previous Articles Next Articles
Tianhang ZHOU1(), Xingying LAN1,2(), Chunming XU1,2
Received:
2022-07-30
Revised:
2022-09-05
Online:
2023-03-20
Published:
2023-01-05
Contact:
Xingying LAN
通讯作者:
蓝兴英
作者简介:
周天航(1994—),男,博士,讲师,zhouth@cup.edu.cn
基金资助:
CLC Number:
Tianhang ZHOU, Xingying LAN, Chunming XU. Artificial intelligence for accelerating polymer design: recent advances and future perspectives[J]. CIESC Journal, 2023, 74(1): 14-28.
周天航, 蓝兴英, 徐春明. 人工智能加速聚合物设计的最新进展和未来前景[J]. 化工学报, 2023, 74(1): 14-28.
Add to citation manager EndNote|Ris|BibTeX
计算方法 | 可用软件 | 可计算特性 |
---|---|---|
基于密度泛函理论(DFT)的第一性原理计算 | VASP[ | 带隙、介电常数、折射率、吸附能、反应活化能等 |
经典分子动力学模拟(MD)和粗粒化(CG)模拟 | LAMMPS[ | 结构因子、回旋半径、相平衡、黏度、热导率、表面张力、离子扩散、气体渗透等 |
Table 1 Methods, packages and target properties of computer simulations for polymer design
计算方法 | 可用软件 | 可计算特性 |
---|---|---|
基于密度泛函理论(DFT)的第一性原理计算 | VASP[ | 带隙、介电常数、折射率、吸附能、反应活化能等 |
经典分子动力学模拟(MD)和粗粒化(CG)模拟 | LAMMPS[ | 结构因子、回旋半径、相平衡、黏度、热导率、表面张力、离子扩散、气体渗透等 |
聚合物信息 | 方法 | 原理 |
---|---|---|
分子组成和结构 | 简化分子输入线性输入系统(SMILES)[ | 分子信息被转换成特征向量或张量 |
化学反应 | 反应SMILESs[ | 基于描述分子组成的方法,从反应物的分子描述符 (如指纹)开始,对其进行求和以及加减等操作 |
序列的特征化 | One-hot encoding(OHE)[ | 将聚合物的序列转换为数字表示,如将有两个单体的 共聚物映射成一个“0”和“1”的二进制数字 |
Table 2 Features of polymers and their representation methods and principles
聚合物信息 | 方法 | 原理 |
---|---|---|
分子组成和结构 | 简化分子输入线性输入系统(SMILES)[ | 分子信息被转换成特征向量或张量 |
化学反应 | 反应SMILESs[ | 基于描述分子组成的方法,从反应物的分子描述符 (如指纹)开始,对其进行求和以及加减等操作 |
序列的特征化 | One-hot encoding(OHE)[ | 将聚合物的序列转换为数字表示,如将有两个单体的 共聚物映射成一个“0”和“1”的二进制数字 |
算法 | 优势 | 劣势 |
---|---|---|
核脊回归(KRR)、支持向量机 (SVM) | 计算成本低 | 通常不适用于大数据集 |
高斯过程回归(GPR) | 可以很好地预测目标值的不确定性 | 不具备在单个模型中处理多参数问题的能力 |
K-邻近算法(K-nearest neighbors) | 直观和简单 | 所分类别的数量必须人为定义且对性质不均一的数据库效果不佳 |
朴素贝叶斯(naive Bayes, NB) | 直观和简单,适用于大型数据集 | 假设所有特征是独立的,因此只适用于较简单的分类问题 |
随机森林(RF)、梯度提升 (gradient boosting, GB) | 适用于大型数据集,并且可提高每个描述符的重要性,有较强的可解释性 | 在相关的超参优化中,可能会创建过于复杂的决策树结构而导致过度拟合 |
人工神经网络(ANN) | 从大规模数据集中捕捉非线性复杂关系的能力很强 | 需要较多的训练数据且缺乏可解释性 |
Table 3 A list of important machine learning (ML) methods in forward design and their advantages and disadvantages[6,26,46-48]
算法 | 优势 | 劣势 |
---|---|---|
核脊回归(KRR)、支持向量机 (SVM) | 计算成本低 | 通常不适用于大数据集 |
高斯过程回归(GPR) | 可以很好地预测目标值的不确定性 | 不具备在单个模型中处理多参数问题的能力 |
K-邻近算法(K-nearest neighbors) | 直观和简单 | 所分类别的数量必须人为定义且对性质不均一的数据库效果不佳 |
朴素贝叶斯(naive Bayes, NB) | 直观和简单,适用于大型数据集 | 假设所有特征是独立的,因此只适用于较简单的分类问题 |
随机森林(RF)、梯度提升 (gradient boosting, GB) | 适用于大型数据集,并且可提高每个描述符的重要性,有较强的可解释性 | 在相关的超参优化中,可能会创建过于复杂的决策树结构而导致过度拟合 |
人工神经网络(ANN) | 从大规模数据集中捕捉非线性复杂关系的能力很强 | 需要较多的训练数据且缺乏可解释性 |
算法 | 优势 | 劣势 |
---|---|---|
主动学习算法,如将高斯过程回归(GPR)同随机森林(RF)和支持向量机(SVM)结合,加入人工标注或构建一个获取函数 | 不断迭代提升分类效果,优化效率高 | 需要遍历材料空间以改进模型、需要正向机器 学习模型提供目标属性的预测值和不确定性值 |
生成模型算法,如变分自动编码器(variational autoencoders, VAEs)、生成对抗网络(generative adversarial networks, GANS) | 可以通过学习将输入的参数和性质 快速扩展到未覆盖的材料空间中 | 目前应用在寻找特殊聚合物材料的时间较短, 需要大量后续工作和研究进行验证 |
全局优化算法,如遗传算法(genetic algorithm, GA)、粒子群优化算法(particle swarm optimization, PSO) | 不需要前置数据库和训练好的机器 学习模型 | 有可能只得到局部优化结果 |
Table 4 A list of important machine learning (ML) and global optimization methods in inverse design and their advantages and disadvantages[4,6]
算法 | 优势 | 劣势 |
---|---|---|
主动学习算法,如将高斯过程回归(GPR)同随机森林(RF)和支持向量机(SVM)结合,加入人工标注或构建一个获取函数 | 不断迭代提升分类效果,优化效率高 | 需要遍历材料空间以改进模型、需要正向机器 学习模型提供目标属性的预测值和不确定性值 |
生成模型算法,如变分自动编码器(variational autoencoders, VAEs)、生成对抗网络(generative adversarial networks, GANS) | 可以通过学习将输入的参数和性质 快速扩展到未覆盖的材料空间中 | 目前应用在寻找特殊聚合物材料的时间较短, 需要大量后续工作和研究进行验证 |
全局优化算法,如遗传算法(genetic algorithm, GA)、粒子群优化算法(particle swarm optimization, PSO) | 不需要前置数据库和训练好的机器 学习模型 | 有可能只得到局部优化结果 |
1 | Allcock H R. Rational design and synthesis of new polymeric material[J]. Science, 1992, 255(5048): 1106-1112. |
2 | Le T, Epa V C, Burden F R, et al. Quantitative structure-property relationship modeling of diverse materials properties[J]. Chemical Reviews, 2012, 112(5): 2889-2919. |
3 | Bereau T, Andrienko D, Kremer K. Research update: computational materials discovery in soft matter[J]. APL Materials, 2016, 4(5): 053101. |
4 | Patra T K. Data-driven methods for accelerating polymer design[J]. ACS Polymers Au, 2022, 2(1): 8-26. |
5 | Sattari K, Xie Y, Lin J. Data-driven algorithms for inverse design of polymers[J]. Soft Matter, 2021, 17(33): 7607-7622. |
6 | Zhu M X, Deng T, Dong L, et al. Review of machine learning-driven design of polymer-based dielectrics[J]. IET Nanodielectrics, 2022, 5(1): 24-38. |
7 | Kumar J, Li Q, Ye J. Challenges and opportunities of polymer design with machine learning and high throughput experimentation[J]. MRS Communications, 2019, 9(2): 1-8. |
8 | Zhou T, Wu Z, Chilukoti H K, et al. Sequence-engineering polyethylene-polypropylene copolymers with high thermal conductivity using a molecular-dynamics-based genetic algorithm[J]. Journal of Chemical Theory and Computation, 2021, 17(6): 3772-3782. |
9 | DeStefano A J, Segalman R A, Davidson E C. Where biology and traditional polymers meet: the potential of associating sequence-defined polymers for materials science[J]. JACS Au, 2021, 1(10):1556-1571. |
10 | Perry S L, Sing C E. 100th anniversary of macromolecular science viewpoint: opportunities in the physics of sequence-defined polymers[J]. ACS Macro Letters, 2020, 9(2): 216-225. |
11 | Khokhlov A R, Khalatur P G. Conformation-dependent sequence design (engineering) of AB copolymers[J]. Physical Review Letters, 1999, 82(17): 3456-3459. |
12 | Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design[J]. Engineering, 2019, 5(6): 1017-1026. |
13 | Webb M A, Jackson N E, Gil P S, et al. Targeted sequence design within the coarse-grained polymer genome[J]. Science Advances, 2020, 6(43): eabc6216. |
14 | Meenakshisundaram V, Hung J H, Patra T K, et al. Designing sequence-specific copolymer compatibilizers using a molecular-dynamics-simulation-based genetic algorithm[J]. Macromolecules, 2017, 50(3): 1155-1166. |
15 | Nguyen D, Tao L, Li Y. Integration of machine learning and coarse-grained molecular simulations for polymer materials: physical understandings and molecular design[J]. Frontiers in Chemistry, 2022, 9: 820417. |
16 | Bernazzani L, Duce C, Micheli A, et al. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks[J]. Journal of Chemical Information and Modeling, 2006, 46(5): 2030-2042. |
17 | Miccio L A, Schwartz G A. From chemical structure to quantitative polymer properties prediction through convolutional neural networks[J]. Polymer, 2020, 193: 122341. |
18 | Zhou T, Schneider J, Wu Z, et al. Compatibilization efficiency of additives in homopolymer blends: a dissipative particle dynamics study[J]. Macromolecules, 2021, 54(20): 9551-9564. |
19 | Eastwood E A, Dadmun M D. Multiblock copolymers in the compatibilization of polystyrene and poly(methyl methacrylate) blends: role of polymer architecture[J]. Macromolecules, 2002, 35(13): 5069-5077. |
20 | Chen G, Shen Z, Iyer A, et al. Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges[J]. Polymers, 2020, 12(1): 163. |
21 | Bowman A L, Mun S, Nouranian S, et al. Free volume and internal structural evolution during creep in model amorphous polyethylene by molecular dynamics simulations[J]. Polymer, 2019, 170: 85-100. |
22 | Choy C L, Wong Y W, Yang G W, et al. Elastic modulus and thermal conductivity of ultradrawn polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(23): 3359-3367. |
23 | Blaber S, Mahmoudi P, Spencer R K W, et al. Effect of chain stiffness on the entropic segregation of chain ends to the surface of a polymer melt[J]. The Journal of Chemical Physics, 2019, 150(1): 014904. |
24 | Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science[J]. APL Materials, 2016, 4(5): 053208. |
25 | Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Physical Review Letters, 2007, 98(14): 146401. |
26 | Jackson N E, Webb M A, de Pablo J J. Recent advances in machine learning towards multiscale soft materials design[J]. Current Opinion in Chemical Engineering, 2019, 23: 106-114. |
27 | Mannodi-Kanakkithodi A, Chandrasekaran A, Kim C, et al. Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond[J]. Materials Today, 2018, 21(7): 785-796. |
28 | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
29 | Kresse G. Ab initio molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1995, 192/193: 222-229. |
30 | Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 2009, 21(39): 395502. |
31 | Giannozzi P, Baseggio O, Bonfà P, et al. QUANTUM ESPRESSO toward the exascale[J]. The Journal of Chemical Physics, 2020, 152(15): 154105. |
32 | Gaussian, Inc. Expanding the Limits of Computational Chemistry[EB/OL]. [2022-07-10]. . |
33 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
34 | Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. |
35 | van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. |
36 | Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. |
37 | Phillips J C, Hardy D J, Maia J D C, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD[J]. The Journal of Chemical Physics, 2020, 153(4): 044130. |
38 | Smith W, Yong C W, Rodger P M. DL_POLY: application to molecular simulation[J]. Molecular Simulation, 2002, 28(5): 385-471. |
39 | Karimi-Varzaneh H A, Qian H J, Chen X, et al. IBIsCO: a molecular dynamics simulation package for coarse-grained simulation[J]. Journal of Computational Chemistry, 2011, 32(7): 1475-1487. |
40 | Pilania G, Wang C, Jiang X, et al. Accelerating materials property predictions using machine learning[J]. Scientific Reports, 2013, 3: 2810. |
41 | SMILES Weininger D., a chemical language and information system (1): Introduction to methodology and encoding rules[J]. Journal of Chemical Information and Computer Sciences, 1988, 28(1): 31-36. |
42 | Heller S R, McNaught A, Pletnev I, et al. InChI, the IUPAC international chemical identifier[J]. Journal of Cheminformatics, 2015, 7: 23. |
43 | Krenn M, Häse F, Nigam A, et al. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation[J]. Machine Learning: Science and Technology, 2020, 1: 045024. |
44 | Daylight Chemical Information Systems, Inc. Reaction SMILES and SMIRKS[EB/OL]. [2022-07-11]. . |
45 | Grethe G, Goodman J M, Allen C H. International chemical identifier for reactions (RInChI)[J]. Journal of Cheminformatics, 2018, 10(1): 45. |
46 | Vu K, Snyder J C, Li L, et al. Understanding kernel ridge regression: common behaviors from simple functions to density functionals[J]. International Journal of Quantum Chemistry, 2015, 115(16): 1115-1128. |
47 | Balachandran P V, Xue D, Theiler J, et al. Adaptive strategies for materials design using uncertainties[J]. Scientific Reports, 2016, 6: 19660. |
48 | Vasudevan R, Pilania G, Balachandran P V. Machine learning for materials design and discovery[J]. Journal of Applied Physics, 2021, 129: 070401. |
49 | Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python[J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830. |
50 | Learn Scikit. Scikit-learn 1.1.1 Documentation[EB/OL]. [2022-07-11]. . |
51 | Keras. The Python Deep Learning API[EB/OL]. [2022-07-11]. . |
52 | PyTorch[EB/OL]. [2022-07-11]. . |
53 | Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
54 | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
55 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
56 | Robeson L M, Liu Q, Freeman B D, et al. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship[J]. Journal of Membrane Science, 2015, 476: 421-431. |
57 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
58 | Barnett J W, Bilchak C R, Wang Y W, et al. Designing exceptional gas-separation polymer membranes using machine learning[J]. Science Advances, 2020, 6(20): eaaz4301. |
59 | Ho J S, Greenbaum S G. Polymer capacitor dielectrics for high temperature applications[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29189-29218. |
60 | Tan D, Zhang L L, Chen Q, et al. High-temperature capacitor polymer films[J]. Journal of Electronic Materials, 2014, 43(12): 4569-4575. |
61 | Zhou Y, Li Q, Dang B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Advanced Materials, 2018, 30(49): 1805672. |
62 | Wu C, Deshmukh A A, Li Z, et al. Flexible temperature-invariant polymer dielectrics with large bandgap[J]. Advanced Materials, 2020, 32(21): 2000499. |
63 | Kim C, Pilania G, Ramprasad R. From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown[J]. Chemistry of Materials, 2016, 28(5): 1304-1311. |
64 | Batra R, Dai H, Huan T D, et al. Polymers for extreme conditions designed using syntax-directed variational autoencoders[J]. Chemistry of Materials, 2020, 32(24): 10489-10500. |
65 | Majewski P W, Gopinadhan M, Jang W S, et al. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment[J]. Journal of the American Chemical Society, 2010, 132(49): 17516-17522. |
66 | Weber R L, Ye Y, Schmitt A L, et al. Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers[J]. Macromolecules, 2011, 44(14): 5727-5735. |
67 | Zhang S, Lee K H, Frisbie C, et al. Ionic conductivity, capacitance, and viscoelastic properties of block copolymer-based ion gels[J]. Macromolecules, 2011, 44: 940-949. |
68 | Guan T, Qian S, Guo Y, et al. Star brush block copolymer electrolytes with high ambient-temperature ionic conductivity for quasi-solid-state lithium batteries[J]. ACS Materials Letters, 2019, 1(6): 606-612. |
69 | Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J]. Progress in Polymer Science, 2011, 36(7): 914-944. |
70 | Yan X R, Gu J W, Zheng G Q, et al. Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers[J]. Polymer, 2016, 103: 315-327. |
71 | Ghahramani N, Esfahani S A S, Mehranpour M, et al. The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride[J]. Journal of Materials Science, 2018, 53(23): 16146-16159. |
72 | Zhang W F, Li H X, Jiang H Y, et al. Influence of surface defects on the thermal conductivity of hexagonal boron nitride/poly(dimethylsiloxane) nanocomposites: a molecular dynamics simulation[J]. Langmuir, 2021, 37(41): 12038-12048. |
73 | Gao Y Y, Müller-Plathe F. Molecular dynamics study on the thermal conductivity of the end-grafted carbon nanotubes filled polyamide-6.6 nanocomposites[J]. The Journal of Physical Chemistry C, 2018, 122(2): 1412-1421. |
74 | Gao Y Y, Müller-Plathe F. Effect of grafted chains on the heat transfer between carbon nanotubes in a polyamide-6.6 matrix: a molecular dynamics study[J]. Polymer, 2017, 129: 228-234. |
75 | Wei X F, Luo T F. The effect of the block ratio on the thermal conductivity of amorphous polyethylene-polypropylene(PE-PP) diblock copolymers[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(31): 20534-20539. |
76 | Li H, Collins C R, Ribelli T G, et al. Tuning the molecular weight distribution from atom transfer radical polymerization using deep reinforcement learning[J]. Molecular Systems Design & Engineering, 2018, 3(3): 496-508. |
77 | Liu H, Xue Y H, Zhu Y L, et al. Inverse design of molecular weight distribution in controlled polymerization via a one-pot reaction strategy[J]. Macromolecules, 2020, 53(15): 6409-6419. |
78 | Li J L, Lim K, Yang H T, et al. AI applications through the whole life cycle of material discovery[J]. Matter, 2020, 3(2): 393-432. |
[1] | Yuzhe LIU, Chengcai LI, Lin LI, Shaohui WANG, Peihui LIU, Tonghua WANG. Structure-property relationship between microstructure of activated carbon and supercapacitor performance [J]. CIESC Journal, 2022, 73(4): 1807-1816. |
[2] | WANG Yali,FU Yousi,CHEN Junhong,HUANG Jiacheng,LIAO Langxing,ZHANG Yonghui,FANG Baishan. Enzyme engineering: from artificial design to artificial intelligence [J]. CIESC Journal, 2021, 72(7): 3590-3600. |
[3] | Luyao TIAN, Zihao WANG, Yang SU, Huaqiang WEN, Weifeng SHEN. Research advances in deep learning based quantitative structure-property relationship modeling of solvents [J]. CIESC Journal, 2020, 71(10): 4462-4472. |
[4] | Zhenhao TANG,Baokai ZHANG,Shengxian CAO,Gong WANG,Bo ZHAO. Furnace temperature modeling based on multi-model intelligent combination algorithm [J]. CIESC Journal, 2019, 70(S2): 301-310. |
[5] | Xiangcheng MA, Wei QIN, Qinglin CHEN, Bingjian ZHANG. Modification of molecular descriptor and modeling for boiling point prediction of aromatic hydrocarbons [J]. CIESC Journal, 2019, 70(11): 4306-4314. |
[6] | ZHANG Rangwen, TIAN Xuemin. Design of adaptive subspace predictive controller with variable forgetting factor [J]. CIESC Journal, 2016, 67(3): 858-864. |
[7] | CAO Pengfei, LUO Xionglin. Modeling of soft sensor for chemical process [J]. CIESC Journal, 2013, 64(3): 788-800. |
[8] | PAN Yong,JIANG Juncheng,CAO Hongyin,WANG Rui. Prediction of flammability characteristics by using quantitative structure-property relationship study based on neural network [J]. , 2008, 27(3): 378-. |
[9] |
XIONG Li, LIANG Jun, QIAN Jixin.
Multivariate statistical process monitoring of an industrial polypropylene catalyzer reactor with component analysis and kernel density estimation [J]. , 2007, 15(4): 524-532. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||