CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4306-4314.DOI: 10.11949/0438-1157.20190425
• Process system engineering • Previous Articles Next Articles
Xiangcheng MA(),Wei QIN,Qinglin CHEN,Bingjian ZHANG()
Received:
2019-04-24
Revised:
2019-07-04
Online:
2019-11-05
Published:
2019-11-05
Contact:
Bingjian ZHANG
通讯作者:
张冰剑
作者简介:
马香成(1995—),女,硕士研究生,基金资助:
CLC Number:
Xiangcheng MA, Wei QIN, Qinglin CHEN, Bingjian ZHANG. Modification of molecular descriptor and modeling for boiling point prediction of aromatic hydrocarbons[J]. CIESC Journal, 2019, 70(11): 4306-4314.
马香成, 秦蔚, 陈清林, 张冰剑. 芳烃分子描述符的修正和沸点预测建模[J]. 化工学报, 2019, 70(11): 4306-4314.
No. | Name | lnW | | | TB/K① | Uncertainty/K① |
---|---|---|---|---|---|---|
1 | 1-methyl-2-n-propylbenzene | 4.796 | 2.201 | 1.242 | 457.82 | 0.7830 |
2 | 4-ethyl-m-xylene | 4.754 | 2.176 | 1.205 | 461.51 | 0.5370 |
3 | p-xylene | 4.127 | 1.946 | 1.084 | 411.46 | 0.0593 |
4 | m-xylene | 4.111 | 1.946 | 1.086 | 412.22 | 0.0261 |
5 | 1-isopropyl-4-methylbenzene | 4.787 | 2.167 | 1.197 | 450.27 | 0.0771 |
6 | 2-ethyl-1,4-dimethylbenzene | 4.745 | 2.176 | 1.205 | 459.72 | 0.7230 |
7 | 1-ethyl-3,5-dimethylbenzene | 4.754 | 2.173 | 1.209 | 457.07 | 1.1400 |
9 | 1-isopropyl-2-methylbenzene | 4.736 | 2.171 | 1.201 | 451.45 | 0.0946 |
10 | 1-isopropyl-3-methylbenzene | 4.762 | 2.167 | 1.200 | 448.20 | 1.3500 |
12 | 1-methyl-4-propylbenzene | 4.844 | 2.197 | 1.239 | 456.50 | 0.7670 |
13 | 1,3-diethylbenzene | 4.796 | 2.205 | 1.240 | 454.27 | 0.1890 |
14 | sec-butylbenzene | 4.796 | 2.201 | 1.235 | 446.44 | 0.0313 |
15 | 1,2,3,5-tetramethylbenzene | 4.700 | 2.147 | 1.168 | 471.07 | 0.8890 |
16 | 1,2,4,5-tetramethylbenzene | 4.710 | 2.147 | 1.166 | 469.88 | 1.6300 |
17 | 1-tert-butyl-3-methylbenzene | 4.997 | 2.236 | 1.240 | 462.38 | 2.5900 |
18 | 1-tert-butyl-4-ethylbenzene | 5.303 | 2.353 | 1.287 | 485.26 | 2.7000 |
Table 1 Boiling point of some aromatic compounds and their Wiener, Randi? and Modran molecular descriptor values
No. | Name | lnW | | | TB/K① | Uncertainty/K① |
---|---|---|---|---|---|---|
1 | 1-methyl-2-n-propylbenzene | 4.796 | 2.201 | 1.242 | 457.82 | 0.7830 |
2 | 4-ethyl-m-xylene | 4.754 | 2.176 | 1.205 | 461.51 | 0.5370 |
3 | p-xylene | 4.127 | 1.946 | 1.084 | 411.46 | 0.0593 |
4 | m-xylene | 4.111 | 1.946 | 1.086 | 412.22 | 0.0261 |
5 | 1-isopropyl-4-methylbenzene | 4.787 | 2.167 | 1.197 | 450.27 | 0.0771 |
6 | 2-ethyl-1,4-dimethylbenzene | 4.745 | 2.176 | 1.205 | 459.72 | 0.7230 |
7 | 1-ethyl-3,5-dimethylbenzene | 4.754 | 2.173 | 1.209 | 457.07 | 1.1400 |
9 | 1-isopropyl-2-methylbenzene | 4.736 | 2.171 | 1.201 | 451.45 | 0.0946 |
10 | 1-isopropyl-3-methylbenzene | 4.762 | 2.167 | 1.200 | 448.20 | 1.3500 |
12 | 1-methyl-4-propylbenzene | 4.844 | 2.197 | 1.239 | 456.50 | 0.7670 |
13 | 1,3-diethylbenzene | 4.796 | 2.205 | 1.240 | 454.27 | 0.1890 |
14 | sec-butylbenzene | 4.796 | 2.201 | 1.235 | 446.44 | 0.0313 |
15 | 1,2,3,5-tetramethylbenzene | 4.700 | 2.147 | 1.168 | 471.07 | 0.8890 |
16 | 1,2,4,5-tetramethylbenzene | 4.710 | 2.147 | 1.166 | 469.88 | 1.6300 |
17 | 1-tert-butyl-3-methylbenzene | 4.997 | 2.236 | 1.240 | 462.38 | 2.5900 |
18 | 1-tert-butyl-4-ethylbenzene | 5.303 | 2.353 | 1.287 | 485.26 | 2.7000 |
No. | XM 0 | XM 1 | HOMA | lnSp | ACD | CIC2 | R 2 | F | RSE |
---|---|---|---|---|---|---|---|---|---|
1 | * | 0.9728 | 2280 | 11.70 | |||||
2 | * | * | 0.9896 | 3010 | 7.29 | ||||
3 | * | * | * | 0.9905 | 2160 | 7.03 | |||
4 | * | * | * | * | 0.9910 | 1680 | 6.90 | ||
5 | * | * | * | * | * | 0.9913 | 1360 | 6.85 | |
6 | * | * | * | * | * | * | 0.9913 | 1130 | 6.89 |
Table 2 Selection of molecular descriptors by optimal subset method
No. | XM 0 | XM 1 | HOMA | lnSp | ACD | CIC2 | R 2 | F | RSE |
---|---|---|---|---|---|---|---|---|---|
1 | * | 0.9728 | 2280 | 11.70 | |||||
2 | * | * | 0.9896 | 3010 | 7.29 | ||||
3 | * | * | * | 0.9905 | 2160 | 7.03 | |||
4 | * | * | * | * | 0.9910 | 1680 | 6.90 | ||
5 | * | * | * | * | * | 0.9913 | 1360 | 6.85 | |
6 | * | * | * | * | * | * | 0.9913 | 1130 | 6.89 |
w | i 1 | i 2 | i 3 | i 4 | No. | θ(j) | γ(k) |
---|---|---|---|---|---|---|---|
j 1 | 0.961 | 3.964 | -0.678 | 2.084 | 1 | 4.496 | 5.985 |
j 2 | 1.345 | 0.629 | 3.33 | -2.316 | 2 | -0.761 | |
j 3 | -0.783 | 1.732 | 2.183 | 1.618 | 3 | 2.332 |
Table 3 Weight and threshold of neural network training model
w | i 1 | i 2 | i 3 | i 4 | No. | θ(j) | γ(k) |
---|---|---|---|---|---|---|---|
j 1 | 0.961 | 3.964 | -0.678 | 2.084 | 1 | 4.496 | 5.985 |
j 2 | 1.345 | 0.629 | 3.33 | -2.316 | 2 | -0.761 | |
j 3 | -0.783 | 1.732 | 2.183 | 1.618 | 3 | 2.332 |
模型 | 数据 | R 2 | MSE | RSE | AAE | APE/% | 分子类型 |
---|---|---|---|---|---|---|---|
M-P基团贡献法 | 66 | 0.9602 | 334.71 | 16.03 | 12.26 | 2.434 | 单环芳烃 |
QSPR 训练集 | 66 | 0.9910 | 43.96 | 6.90 | 5.11 | 1.038 | 单环芳烃 |
QSPR 测试集 | 66 | 0.9897 | 50.69 | 7.20 | 5.56 | 1.134 | 单环芳烃 |
QSPR-ML 训练集 | 66 | 0.9936 | 33.37 | 5.77 | 4.56 | 0.933 | 单环芳烃 |
QSPR-ML 测试集 | 66 | 0.9942 | 38.03 | 5.75 | 5.06 | 1.057 | 单环芳烃 |
HMC-WL-ANN | 20 | — | — | — | 26.85 | 3.814 | 多环芳烃 |
QSPR(Dai) | 50 | 0.9910 | — | 6.46 | — | — | 不饱和烃 |
Table 4 Comparison of group contribution method, QSPR and QSPR-ML models for predicting boiling point of aromatics
模型 | 数据 | R 2 | MSE | RSE | AAE | APE/% | 分子类型 |
---|---|---|---|---|---|---|---|
M-P基团贡献法 | 66 | 0.9602 | 334.71 | 16.03 | 12.26 | 2.434 | 单环芳烃 |
QSPR 训练集 | 66 | 0.9910 | 43.96 | 6.90 | 5.11 | 1.038 | 单环芳烃 |
QSPR 测试集 | 66 | 0.9897 | 50.69 | 7.20 | 5.56 | 1.134 | 单环芳烃 |
QSPR-ML 训练集 | 66 | 0.9936 | 33.37 | 5.77 | 4.56 | 0.933 | 单环芳烃 |
QSPR-ML 测试集 | 66 | 0.9942 | 38.03 | 5.75 | 5.06 | 1.057 | 单环芳烃 |
HMC-WL-ANN | 20 | — | — | — | 26.85 | 3.814 | 多环芳烃 |
QSPR(Dai) | 50 | 0.9910 | — | 6.46 | — | — | 不饱和烃 |
1 | Constantinou L , Gani R . New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 1994, 40(10): 1697-1710. |
2 | Messerly R A , Knotts IV T A , Giles N F , et al . Developing an internally consistent set of theoretically based prediction models for the critical constants and normal boiling point of large n-alkanes[J]. Fluid Phase Equilibria, 2017, 449: 104-116. |
3 | Shacham M , Brauner N . Analysis and refinement of the training set in predicting a variety of constant pure compound properties by the targeted QSPR method[J]. Chemical Engineering Science, 2011, 66(12): 2606-2615. |
4 | Varamesh A , Hemmati-Sarapardeh A , Dabir B , et al . Development of robust generalized models for estimating the normal boiling points of pure chemical compounds[J]. Journal of Molecular Liquids, 2017, 242: 59-69. |
5 | Wen X , Qiang Y . Group vector space method for estimating melting and boiling points of organic compounds[J]. Industrial & Engineering Chemistry Research, 2002, 41(22): 5534-5537. |
6 | Joback K G , Reid R C . Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1/2/3/4/5/6): 233-243. |
7 | Marrero‐Morejón J , Pardillo-Fontdevila E . Estimation of pure compound properties using group‐interaction contributions[J]. AIChE Journal, 1999, 45(3): 615-621. |
8 | Ghasemitabar H , Movagharnejad K . Estimation of the normal boiling point of organic compounds via a new group contribution method[J]. Fluid Phase Equilibria, 2016, 411: 13-23. |
9 | Dearden J C . Quantitative structure‐property relationships for prediction of boiling point, vapor pressure, and melting point[J]. Environmental Toxicology and Chemistry, 2003, 22(8): 1696-1709. |
10 | Wiener H . Structural determination of paraffin boiling points[J]. Journal of the American Chemical Society, 1947, 69(1): 17-20. |
11 | Todeschini R , Consonni V . Handbook of Molecular Descriptors[M]. John Wiley & Sons, 2008. |
12 | Zhou L , Wang B , Jiang J , et al . Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds[J]. Thermochimica Acta, 2017, 655: 112-116. |
13 | Fissa M R , Lahiouel Y , Khaouane L , et al . QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods[J]. Journal of Molecular Graphics and Modelling, 2019, 87: 109-120. |
14 | Ha Z , Ring Z , Liu S . Quantitative structure- property relationship (QSPR) models for boiling points, specific gravities, and refraction indices of hydrocarbons[J]. Energy & Fuels, 2005, 19(1): 152-163. |
15 | Li Z , Zuo L , Wu W , et al . The new method for correlation and prediction of thermophysical properties of fluids. critical temperature[J]. Journal of Chemical & Engineering Data, 2017, 62(11): 3723-3731. |
16 | 魏文英, 孔海宁, 许文, 等 . 蒸发焓及沸点估算的基团拓扑空间方法[J]. 化工学报, 2006, 57(4): 710-714. |
Wei W Y , Kong H N , Xu W , et al . Topologic group space method for estimating normal boiling point enthalpy of vaporization and boiling point [J]. Journal of Chemical Industry and Engineering(China), 2006, 57(4): 710-714. | |
17 | Brauner N , St Cholakov G , Kahrs O , et al . Linear QSPRs for predicting pure compound properties in homologous series[J]. AIChE Journal, 2008, 54(4): 978-990. |
18 | Brauner N , Paster I , Shacham M . Linear QSPRs for the prediction of acentric factor and critical volume of long-chain substances[C]// 2010 AIChE Annual Meeting. Salt Lake City, UT, 2010. |
19 | Paster I , Shacham M , Brauner N . Adjustable QSPRs for prediction of properties of long‐chain substances[J]. AIChE Journal, 2011, 57(2): 423-433. |
20 | Brauner N , Shacham M . Prediction of normal melting point of pure substances by a reference series method[J]. AIChE Journal, 2013, 59(10): 3730-3740. |
21 | Shacham M , Cholakov G S , Stateva R P , et al . Quantitative structure-property relationships for prediction of phase equilibrium related properties[J]. Industrial & Engineering Chemistry Research, 2009, 49(2): 900-912. |
22 | Manso F C G , Júnior H S , Bruns R E , et al . Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: the Fi index[J]. Journal of Molecular Liquids, 2012, 165: 125-132. |
23 | Dai Y , Zhu Z , Cao Z , et al . Prediction of boiling points of organic compounds by QSPR tools[J]. Journal of Molecular Graphics and Modelling, 2013, 44: 113-119. |
24 | 沐来龙, 冯长君 . 环价连接性指数与饱和烃沸点的QSPR研究[J]. 化工学报, 2004, 55(10): 1702-1705. |
Mu L L , Feng C J . Connectivity index of environment valence and QSPR research for boiling points of saturated hydrocarbon [J]. Journal of Chemical Industry and Engineering(China), 2004, 55(10): 1702-1705. | |
25 | Zeng Y , Liu J , Sun K , et al . Machine learning based system performance prediction model for reactor control[J]. Annals of Nuclear Energy, 2018, 113: 270-278. |
26 | Zhang Z , Li H , Chang H , et al . Machine learning predictive framework for CO2 thermodynamic properties in solution[J]. Journal of CO2 Utilization, 2018, 26: 152-159. |
27 | Palagi L , Pesyridis A , Sciubba E , et al . Machine learning for the prediction of the dynamic behavior of a small scale ORC system[J]. Energy, 2019, 166: 72-82. |
28 | Cipullo S , Snapir B , Prpich G , et al . Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models[J]. Chemosphere, 2019, 215: 388-395. |
29 | Saldana D A , Starck L , Mougin P , et al . Prediction of flash points for fuel mixtures using machine learning and a novel equation[J]. Energy & Fuels, 2013, 27(7): 3811-3820. |
30 | Yang S , Lu W , Chen N , et al . Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure: THEOCHEM, 2005, 719(1/2/3): 119-127. |
31 | Groven S D , Desgranges C , Delhommelle J . Prediction of the boiling and critical points of polycyclic aromatic hydrocarbons via Wang-Landau simulations and machine learning[J]. Fluid Phase Equilibria, 2019, 484: 225-231. |
32 | 苏文, 赵力, 邓帅 . 基于基团拓扑的遗传神经网络工质临界温度预测[J]. 化工学报, 2016, 67(11): 4689-4695. |
Su W , Zhao L , Deng S . Prediction of refrigerant critical temperature with genetic neural network based on group topology [J]. CIESC Journal, 2016, 67(11): 4689-4695. | |
33 | Varamesh A , Hemmati-Sarapardeh A , Moraveji M K , et al . Generalized models for predicting the critical properties of pure chemical compounds[J]. Journal of Molecular Liquids, 2017, 240: 777-793. |
34 | Goh A T C . Back-propagation neural networks for modeling complex systems[J]. Artificial Intelligence in Engineering, 1995, 9(3): 143-151. |
[1] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[2] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[6] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[7] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[12] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[13] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[14] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[15] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||