CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 301-310.DOI: 10.11949/0438-1157.20190037
• Process system engineering • Previous Articles Next Articles
Zhenhao TANG(
),Baokai ZHANG,Shengxian CAO,Gong WANG,Bo ZHAO
Received:2019-01-09
Revised:2019-06-04
Online:2019-09-06
Published:2019-09-06
Contact:
Zhenhao TANG
通讯作者:
唐振浩
作者简介:唐振浩(1985—),男,博士,副教授,基金资助:CLC Number:
Zhenhao TANG,Baokai ZHANG,Shengxian CAO,Gong WANG,Bo ZHAO. Furnace temperature modeling based on multi-model intelligent combination algorithm[J]. CIESC Journal, 2019, 70(S2): 301-310.
唐振浩,张宝凯,曹生现,王恭,赵波. 基于多模型智能组合算法的锅炉炉膛温度建模[J]. 化工学报, 2019, 70(S2): 301-310.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | 变量名 | 单位 | 变化范围 | 标签 |
|---|---|---|---|---|
| 1 | 烟气含氧量 | % | [2.431—2.892] | F1 |
| 2 | 主蒸汽流量 | t/h | [183.078—251.084] | F2 |
| 3 | 主蒸汽压力 | MPa | [12.976—13.316] | SP |
| 4 | 主蒸汽温度 | ℃ | [533.611—542.525] | ST |
| 5 | 机组负荷 | MW | [109.863—145.578] | Pa |
| 6 | 再热器压力 | MPa | [1.290—1.813] | RP |
| 7 | 燃料量 | t/h | [132.382—155.044] | F3 |
| 8 | 送风量 | t/h | [143.255—176.080] | F4 |
| 9 | 给水流量 | t/h | [361.375—505.756] | F5 |
| 10 | 炉膛负压 | Pa | [-62.732—-20.063] | FP |
| 11 | 过热减温水流量 | t/h | [2.205—10.462] | F6 |
| 12 | 锅炉蒸发量 | t/h | [373.350—512.889] | F7 |
| 13 | 再热蒸汽温度 | ℃ | [525.254—542.707] | RT |
| 14 | 再热减温水流量 | t/h | [3.958—7.734] | F8 |
| 15 | 排烟温度 | ℃ | [161.903—171.807] | GT |
| 16 | 送风挡板开度 | % | [3.399—40.828] | F9 |
Table 1 Description of variables related with furnace temperature
| 序号 | 变量名 | 单位 | 变化范围 | 标签 |
|---|---|---|---|---|
| 1 | 烟气含氧量 | % | [2.431—2.892] | F1 |
| 2 | 主蒸汽流量 | t/h | [183.078—251.084] | F2 |
| 3 | 主蒸汽压力 | MPa | [12.976—13.316] | SP |
| 4 | 主蒸汽温度 | ℃ | [533.611—542.525] | ST |
| 5 | 机组负荷 | MW | [109.863—145.578] | Pa |
| 6 | 再热器压力 | MPa | [1.290—1.813] | RP |
| 7 | 燃料量 | t/h | [132.382—155.044] | F3 |
| 8 | 送风量 | t/h | [143.255—176.080] | F4 |
| 9 | 给水流量 | t/h | [361.375—505.756] | F5 |
| 10 | 炉膛负压 | Pa | [-62.732—-20.063] | FP |
| 11 | 过热减温水流量 | t/h | [2.205—10.462] | F6 |
| 12 | 锅炉蒸发量 | t/h | [373.350—512.889] | F7 |
| 13 | 再热蒸汽温度 | ℃ | [525.254—542.707] | RT |
| 14 | 再热减温水流量 | t/h | [3.958—7.734] | F8 |
| 15 | 排烟温度 | ℃ | [161.903—171.807] | GT |
| 16 | 送风挡板开度 | % | [3.399—40.828] | F9 |
| 序号 | 测量值 | 预测结果 | 类别 | |||
|---|---|---|---|---|---|---|
| BP | RBF | MLP | LSSVM | |||
| 1 | 803.9 | 802.4 | 803.8 | 802.3 | 803.5 | 2 |
| 2 | 805.1 | 804.9 | 803.6 | 803.9 | 804.5 | 1 |
| 3 | 805.6 | 804.2 | 804.9 | 804.1 | 805.0 | 4 |
| 4 | 803.2 | 802.4 | 802.6 | 801.4 | 803.0 | 4 |
| ? | ? | ? | ? | ? | ? | ? |
| 298 | 796.2 | 795.7 | 796.6 | 796.3 | 796.4 | 3 |
| 299 | 796.4 | 795.1 | 795.9 | 795.8 | 795.6 | 2 |
| 300 | 796.8 | 796.2 | 795.5 | 796.4 | 796.6 | 4 |
Table 2 Training data of classification model (partial)
| 序号 | 测量值 | 预测结果 | 类别 | |||
|---|---|---|---|---|---|---|
| BP | RBF | MLP | LSSVM | |||
| 1 | 803.9 | 802.4 | 803.8 | 802.3 | 803.5 | 2 |
| 2 | 805.1 | 804.9 | 803.6 | 803.9 | 804.5 | 1 |
| 3 | 805.6 | 804.2 | 804.9 | 804.1 | 805.0 | 4 |
| 4 | 803.2 | 802.4 | 802.6 | 801.4 | 803.0 | 4 |
| ? | ? | ? | ? | ? | ? | ? |
| 298 | 796.2 | 795.7 | 796.6 | 796.3 | 796.4 | 3 |
| 299 | 796.4 | 795.1 | 795.9 | 795.8 | 795.6 | 2 |
| 300 | 796.8 | 796.2 | 795.5 | 796.4 | 796.6 | 4 |
| 时间 | 标签 | 输入变量 | 输出变量 | 训练集 | 测试集 | 验证集 | 采用间隔 | 备注(温度变化范围) |
|---|---|---|---|---|---|---|---|---|
| 2016\03\01 08:00~03\02 02:18 | T1 | 10 | 1 | 700 | 300 | 100 | 60s | 757℃上升至835℃ |
| 2016\03\03 10:00~03\04 06:18 | T2 | 10 | 1 | 700 | 300 | 100 | 60s | 754~805℃范围内变化 |
| 2016\03\10 07:00~03\11 01:18 | T3 | 10 | 1 | 700 | 300 | 100 | 60s | 845℃下降至779℃ |
Table 3 Information of experimental data
| 时间 | 标签 | 输入变量 | 输出变量 | 训练集 | 测试集 | 验证集 | 采用间隔 | 备注(温度变化范围) |
|---|---|---|---|---|---|---|---|---|
| 2016\03\01 08:00~03\02 02:18 | T1 | 10 | 1 | 700 | 300 | 100 | 60s | 757℃上升至835℃ |
| 2016\03\03 10:00~03\04 06:18 | T2 | 10 | 1 | 700 | 300 | 100 | 60s | 754~805℃范围内变化 |
| 2016\03\10 07:00~03\11 01:18 | T3 | 10 | 1 | 700 | 300 | 100 | 60s | 845℃下降至779℃ |
| 数据集 | 评价指标 | BP | RBF | MLP | LSSVM | MICA |
|---|---|---|---|---|---|---|
| S1 | MAPE | 0.116 | 0.110 | 0.051 | 0.052 | 0.039 |
| MSE | 1.076 | 1.245 | 0.300 | 0.377 | 0.335 | |
| MAE | 0.905 | 0.866 | 0.405 | 0.413 | 0.306 | |
| S2 | MAPE | 0.106 | 0.120 | 0.111 | 0.090 | 0.060 |
| MSE | 1.080 | 1.939 | 1.468 | 1.059 | 0.673 | |
| MAE | 0.826 | 0.926 | 0.864 | 0.69 | 0.464 | |
| S3 | MAPE | 0.099 | 0.141 | 0.083 | 0.069 | 0.043 |
| MSE | 1.313 | 2.613 | 1.040 | 0.836 | 0.348 | |
| MAE | 0.776 | 1.122 | 0.652 | 0.542 | 0.340 |
Table 4 Comparison results of different evaluation criterion
| 数据集 | 评价指标 | BP | RBF | MLP | LSSVM | MICA |
|---|---|---|---|---|---|---|
| S1 | MAPE | 0.116 | 0.110 | 0.051 | 0.052 | 0.039 |
| MSE | 1.076 | 1.245 | 0.300 | 0.377 | 0.335 | |
| MAE | 0.905 | 0.866 | 0.405 | 0.413 | 0.306 | |
| S2 | MAPE | 0.106 | 0.120 | 0.111 | 0.090 | 0.060 |
| MSE | 1.080 | 1.939 | 1.468 | 1.059 | 0.673 | |
| MAE | 0.826 | 0.926 | 0.864 | 0.69 | 0.464 | |
| S3 | MAPE | 0.099 | 0.141 | 0.083 | 0.069 | 0.043 |
| MSE | 1.313 | 2.613 | 1.040 | 0.836 | 0.348 | |
| MAE | 0.776 | 1.122 | 0.652 | 0.542 | 0.340 |
| 标签 | 评价指标 | BP | RBF | MLP | LSSVM | LSTM |
|---|---|---|---|---|---|---|
| T1 | MAPE | 0.128 | 0.135 | 0.068 | 0.066 | 0.892 |
| MSE | 1.397 | 2.180 | 0.607 | 0.725 | 69.480 | |
| MAE | 0.996 | 1.054 | 0.535 | 0.518 | 6.992 | |
| T2 | MAPE | 0.106 | 0.105 | 0.091 | 0.055 | 0.597 |
| MSE | 1.066 | 1.275 | 0.953 | 1.247 | 33.439 | |
| MAE | 0.821 | 0.813 | 0.704 | 0.703 | 4.630 | |
| T3 | MAPE | 0.080 | 0.159 | 0.074 | 0.091 | 0.965 |
| MSE | 0.767 | 2.799 | 0.761 | 0.607 | 84.843 | |
| MAE | 0.638 | 1.262 | 0.582 | 0.502 | 7.647 |
Table 5 Comparison of prediction results via different models
| 标签 | 评价指标 | BP | RBF | MLP | LSSVM | LSTM |
|---|---|---|---|---|---|---|
| T1 | MAPE | 0.128 | 0.135 | 0.068 | 0.066 | 0.892 |
| MSE | 1.397 | 2.180 | 0.607 | 0.725 | 69.480 | |
| MAE | 0.996 | 1.054 | 0.535 | 0.518 | 6.992 | |
| T2 | MAPE | 0.106 | 0.105 | 0.091 | 0.055 | 0.597 |
| MSE | 1.066 | 1.275 | 0.953 | 1.247 | 33.439 | |
| MAE | 0.821 | 0.813 | 0.704 | 0.703 | 4.630 | |
| T3 | MAPE | 0.080 | 0.159 | 0.074 | 0.091 | 0.965 |
| MSE | 0.767 | 2.799 | 0.761 | 0.607 | 84.843 | |
| MAE | 0.638 | 1.262 | 0.582 | 0.502 | 7.647 |
| 算法 | 方法 | MAPE | MSE | MAE |
|---|---|---|---|---|
| BP | raw | 0.254 | 5.939 | 1.924 |
| denoisied | 0.064 | 0.480 | 0.489 | |
| RBF | raw | 0.288 | 9.408 | 2.207 |
| denoised | 0.093 | 0.854 | 0.713 | |
| MLP | raw | 0.251 | 5.387 | 1.924 |
| denoised | 0.100 | 1.237 | 0.767 | |
| LSSVM | raw | 0.252 | 6.519 | 1.932 |
| denoised | 0.166 | 3.088 | 1.272 | |
| LSTM | raw | 0.355 | 11.795 | 2.723 |
| denoised | 0.361 | 11.710 | 2.768 |
Table 6 Results of data preprocessing
| 算法 | 方法 | MAPE | MSE | MAE |
|---|---|---|---|---|
| BP | raw | 0.254 | 5.939 | 1.924 |
| denoisied | 0.064 | 0.480 | 0.489 | |
| RBF | raw | 0.288 | 9.408 | 2.207 |
| denoised | 0.093 | 0.854 | 0.713 | |
| MLP | raw | 0.251 | 5.387 | 1.924 |
| denoised | 0.100 | 1.237 | 0.767 | |
| LSSVM | raw | 0.252 | 6.519 | 1.932 |
| denoised | 0.166 | 3.088 | 1.272 | |
| LSTM | raw | 0.355 | 11.795 | 2.723 |
| denoised | 0.361 | 11.710 | 2.768 |
| 数据集 | 类别 | A | B | C | D | 正确率/% |
|---|---|---|---|---|---|---|
| S1 | A | 6 | 0 | 1 | 0 | 86 |
| B | 0 | 14 | 2 | 0 | ||
| C | 1 | 2 | 27 | 3 | ||
| D | 1 | 1 | 3 | 39 | ||
| Sum | 8 | 17 | 33 | 42 | ||
| S2 | A | 6 | 0 | 2 | 2 | 80 |
| B | 3 | 15 | 0 | 5 | ||
| C | 0 | 1 | 20 | 3 | ||
| D | 3 | 0 | 1 | 39 | ||
| Sum | 12 | 16 | 23 | 49 | ||
| S3 | A | 23 | 0 | 0 | 0 | 91 |
| B | 1 | 12 | 3 | 0 | ||
| C | 0 | 0 | 25 | 0 | ||
| D | 1 | 1 | 3 | 31 | ||
| Sum | 25 | 13 | 31 | 31 |
Table 7 Confusion matrix of different algorithms classification results
| 数据集 | 类别 | A | B | C | D | 正确率/% |
|---|---|---|---|---|---|---|
| S1 | A | 6 | 0 | 1 | 0 | 86 |
| B | 0 | 14 | 2 | 0 | ||
| C | 1 | 2 | 27 | 3 | ||
| D | 1 | 1 | 3 | 39 | ||
| Sum | 8 | 17 | 33 | 42 | ||
| S2 | A | 6 | 0 | 2 | 2 | 80 |
| B | 3 | 15 | 0 | 5 | ||
| C | 0 | 1 | 20 | 3 | ||
| D | 3 | 0 | 1 | 39 | ||
| Sum | 12 | 16 | 23 | 49 | ||
| S3 | A | 23 | 0 | 0 | 0 | 91 |
| B | 1 | 12 | 3 | 0 | ||
| C | 0 | 0 | 25 | 0 | ||
| D | 1 | 1 | 3 | 31 | ||
| Sum | 25 | 13 | 31 | 31 |
| 1 | ZhaoH, WangP H, PengX, et al. Constrained optimization of combustion at a coal-fired utility boiler using hybrid particle swarm optimization with invasive weed[C]//International Conference on Energy and Environment Technology. IEEE, 2009: 564-567. |
| 2 | LukaszS, KonradW, KonradS, et al. Optimization of combustion process in coal-fired power plant with utilization of acoustic system for in-furnace temperature measurement[J]. Applied Thermal Engineering, 2017, 123: 711-720. |
| 3 | HasanO, CalinZ, IbrahimD. Transient modeling of a gas-liquid piston-cylinder mechanism for low temperature energy conversion applications[J]. International Journal of Thermal Sciences, 2017, 111: 525-532. |
| 4 | 蔡金锭, 鄢仁武. ARMA双谱分析与离散隐马尔可夫模型在电力电子电路故障诊断中的应用[J]. 中国电机工程学报, 2010, 30(24): 54-60. |
| CaiJ D, YanR W. Fault diagnosis of power electronic circuit applying ARMA bispectrum and discrete hidden Markov model[J]. Proceedings of the CSEE, 2010, 30(24): 54-60. | |
| 5 | HisashiT, YoshiyasuT, SeishoS. Using the ensemble Kalman filter for electricity load forecasting and analysis[J]. Energy, 2016, 104: 184-198. |
| 6 | 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788-800. |
| CaoP F, LuoX L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3): 788-800. | |
| 7 | 钱晓山, 阳春华, 徐丽莎. 基于改进差分进化和最小二乘支持向量机的铝酸钠溶液浓度软测量[J]. 化工学报, 2013, 64(5): 1704-1709. |
| QianX S, YangC H, XuL S. Soft sensor of sodium aluminate solution concentration based on improved differential evolution algorithm and LSSVM[J]. CIESC Journal, 2013, 64(5): 1704-1709. | |
| 8 | 岳毅宏, 韩文秀, 张伟波. 基于关联度的混沌序列局域加权线性回归预测法[J]. 中国电机工程学报, 2004, 24(11): 19-22. |
| YueY H, HanW X, ZhangW B. Local adding-weight linear regression forecasting method of chaotic series based on degree of incidence[J]. Proceedings of the CSEE, 2004, 24(11): 19-22. | |
| 9 | 李强, 徐建政. 基于主观贝叶斯方法的电力系统故障诊断[J]. 电力系统自动化, 2007, 31(15): 46-50. |
| LiQ, XuJ Z. Power system fault diagnosis based on subjective Bayesian approach[J]. Automation of Electric Power Systems, 2007, 31(15): 46-50. | |
| 10 | 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法[J]. 化工学报, 2011, 62(8): 2248-2252. |
| TangZ J, TangZ H, ZhuH Q. A multi-model fusion soft sensor modeling method[J]. CIESC Journal, 2011, 62(8): 2248-2252. | |
| 11 | 王锋, 李宏光, 臧灏. 基于Logistic和ARMA模型的过程报警预测[J]. 化工学报, 2012, 63(9): 2941-2947. |
| WangF, LiH G, ZangH. Process alarm prognosis based on Logistic and ARMA models[J]. CIESC Journal, 2012, 63(9): 2941-2947. | |
| 12 | 朱鹏飞, 夏陆岳, 潘海天. 基于改进Kalman滤波算法的多模型融合建模方法[J]. 化工学报, 2015, 66(4): 1388-1394. |
| ZhuP F, XiaL Y, PanH T. Multi-model fusion modeling method based on improved Kalman filtering algorithm[J]. CIESC Journal, 2015, 66(4): 1388-1394. | |
| 13 | 闫哲, 张卜升, 刘永忠. 基于Kalman滤波的换热器非线性状态参数校正[J]. 化工学报, 2012, 63(2): 523-529. |
| YanZ, ZhangB S, LiuY Z. Data reconciliation for nonlinear state parameters of heat exchangers using Kalman filtering[J]. CIESC Journal, 2012, 63(2): 523-529. | |
| 14 | 顾燕萍, 赵文杰, 吴占松. 基于最小二乘支持向量机的电站锅炉燃烧优化[J]. 中国电机工程学报, 2010, 30(17): 91-97. |
| GuY P, ZhaoW J, WuZ S. Combustion optimization for utility boiler based on least square-support vector machine[J]. Proceedings of the CSEE, 2010, 30(17): 91-97. | |
| 15 | TangZ H, ZhangH Y, CheP, et al. Data analytics based dual-optimized adaptive model predictive control for the power plant boiler[J]. Mathematical Problems in Engineering, 2017, 2017: 1-9. |
| 16 | 王占能, 徐祖华, 赵均, 等. 基于负荷划分数据和支持向量机的火电厂燃烧过程建模[J]. 化工学报, 2013, 64(12): 4496-4502. |
| WangZ N, XuZ H, ZhaoJ, et al. Coal-fired power plant boiler combustion process modeling based on support vector machine and load data division[J]. CIESC Journal, 2013, 64(12): 4496-4502. | |
| 17 | 韩改堂, 乔俊飞, 韩红桂. 基于递归模糊神经网络的污水处理控制方法[J]. 化工学报, 2016, 67(3): 954-959. |
| HanG T, QiaoJ F, HanH G. Wastewater treatment control method based on recurrent fuzzy neural network[J]. CIESC Journal, 2016, 67(3): 954-959. | |
| 18 | 罗滇生, 姚建刚, 何洪英, 等. 基于自适应滚动优化的电力负荷多模型组合预测系统的研究与开发[J]. 中国电机工程学报, 2003, 23(5): 59-62. |
| LuoD S, YaoJ G, HeH Y, et al. Research and development of multi-model combining load forecasting system based on self-adaptive rolling optimization[J]. Proceedings of the CSEE, 2003, 23(5): 59-62. | |
| 19 | CheJ X. Optimal sub-models selection algorithm for combination forecasting model[J]. Neurocomputing, 2015, 151: 364-375. |
| 20 | HaiX V, DurlofskyL J. Regularized kernel PCA for the efficient parameterization of complex geological models[J]. Journal of Computational Physics, 2016, 322: 859-881. |
| 21 | 童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10): 4101-4106. |
| TongC D, ShiX H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10): 4101-4106. | |
| 22 | 朱群雄, 陈希, 贺彦林, 等. 基于PCA-DEA的乙烯装置能效分析[J]. 化工学报, 2015, 66(1): 278-283. |
| ZhuQ X, ChenX, HeY L, et al. Energy efficiency analysis for ethylene plant based on PCA-DEA[J]. CIESC Journal, 2015, 66(1): 278-283. | |
| 23 | 唐贵基, 邓飞跃, 张超, 等. 基于倒谱预白化和奇异值分解的滚动轴承故障特征提取方法[J]. 中国电机工程学报, 2014, 34(35): 6355-6361. |
| TangG J, DengF Y, ZhangC, et al. Extraction method of rolling bearing fault feature based on cepstrum pre-whitening and singular value decomposition[J]. Proceedings of the CSEE, 2014, 34(35): 6355-6361. | |
| 24 | 唐炬, 董玉林, 樊雷, 等. 基于Hankel矩阵的复小波-奇异值分解法提取局部放电特征信息[J]. 中国电机工程学报, 2015, 35(7): 1808-1817. |
| TangJ, DongY L, FanL, et al. Feature information extraction of partial discharge signal with complex wavelet transform and singular value decomposition based on Hankel matrix[J]. Proceedings of the CSEE, 2015, 35(7): 1808-1817. | |
| 25 | 黄南天, 彭华, 蔡国伟, 等. 电能质量复合扰动特征选择与最优决策树构建[J]. 中国电机工程学报, 2017, 37(3): 776-786. |
| HuangN T, PengH, CaiG W, et al. Feature selection and optimal decision tree construction of complex power quality disturbances[J]. Proceedings of the CSEE, 2017, 37(3): 776-786. | |
| 26 | MonalisaM, SantanuS, PradyutB, et al. Efficient classification of ventricular arrhythmias using feature selection and C4.5 classifier[J]. Biomedical Signal Processing and Control, 2018, 44: 200-208. |
| 27 | 董明, 屈彦明, 周孟戈. 基于组合决策树的油浸式电力变压器故障诊断[J]. 中国电机工程学报, 2005, 25(16): 35-41. |
| DongM, QuY M, ZhouM G. Fault diagnosis of oil-immersed power transformer using combinatorial decision tree[J]. Proceedings of the CSEE, 2005, 25(16): 35-41. | |
| 28 | 栗然, 刘宇, 黎静华, 等. 基于改进决策树算法的日特征负荷预测研究[J]. 中国电机工程学报, 2005, 25(23): 36-41. |
| LiR, LiuY, LiJ H, et al. Study on the daily characteristic load forecasting based on the optimized algorithm of decision tree[J]. Proceedings of the CSEE, 2005, 25(23): 36-41. | |
| 29 | 秦品乐, 林焰, 陈明. 基于平移不变小波阈值算法的经验模态分解方法[J]. 仪器仪表学报, 2008, 29(12): 2637-2641. |
| QinP L, LinY, ChenM. Empirical mode decomposition method based on wavelet with translation invariance algorithm[J]. Chinese Journal of Scientific Instrument, 2008, 29(12): 2637-2641. | |
| 30 | MeiL X, MinH, HongF L. Wavelet-denoising multiple echo state networks for multivariate time series prediction[J]. Information Sciences, 2018, 465: 439-458. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||