1 |
吕青青, 周俊兰, 王光辉, 等. 高炉风口焦炭的形貌与冶金行为[J]. 钢铁, 2021, 56(10): 45-53.
|
|
Lv Q Q, Zhou J L, Wang G H, et al. Morphology and metallurgical behavior of coke at tuyere of blast furnace[J]. Iron and Steel, 2021, 56(10): 45-53.
|
2 |
Wang M C, Wei G S, Yang S F, et al. Effect of alkali (K/Na) metal vapor on the metallurgical properties of coke in CO2-O2-N2 mixed atmosphere[J]. Energy, 2022, 257: 124748.
|
3 |
Wang Q, Guo R, Zhao X F, et al. A new testing and evaluating method of cokes with greatly varied CRI and CSR[J]. Fuel, 2016, 182: 879-885.
|
4 |
Huang J C, Guo R, Wang Q, et al. Coke solution-loss degradation model with non-equimolar diffusion and changing local pore structure[J]. Fuel, 2020, 263: 116694.
|
5 |
Kumar D, Saxena V K, Tiwari H P, et al. Variability in metallurgical coke reactivity index (CRI) and coke strength after reaction (CSR): an experimental study[J]. ACS Omega, 2022, 7(2): 1703-1711.
|
6 |
Klika Z, Serenčíšová J, Kolomazník I, et al. Prediction of CRI and CSR of cokes by two-step correction models for stamp-charged coals—statistical analysis[J]. Fuel, 2020, 262: 116623.
|
7 |
Zhao J, Zuo H B, Ling C, et al. Microstructure evolution of coke under CO2 and H2O atmospheres[J]. Journal of Iron and Steel Research International, 2020, 27(7): 743-754.
|
8 |
Hilding T, Gupta S, Sahajwalla V, et al. Degradation behaviour of a high CSR coke in an experimental blast furnace: effect of carbon structure and alkali reactions[J]. ISIJ International, 2005, 45(7): 1041-1050.
|
9 |
Wang W, Dai B W, Xu R S, et al. The effect of H2O on the reactivity and microstructure of metallurgical coke[J]. Steel Research International, 2017, 88(8): 1700063.
|
10 |
Niu Q, Cheng S S, Xu W X, et al. Analysis of the coke particle size distribution and porosity of deadman based on blast furnace hearth dissection[J]. ISIJ International, 2019, 59(11): 1997-2004.
|
11 |
黄逸群, 张缦, 单露, 等. 干馏条件对油页岩半焦孔隙结构的影响[J]. 化工学报, 2017, 68(10): 3870-3876.
|
|
Huang Y Q, Zhang M, Shan L, et al. Effects of retorting conditions on pore structure of oil shale semi coke[J]. CIESC Journal, 2017, 68(10): 3870-3876.
|
12 |
崔平, 张磊, 杨敏, 等. 焦炭溶损反应动力学及其模型研究[J]. 燃料化学学报, 2006, 34(3): 280-284.
|
|
Cui P, Zhang L, Yang M, et al. Study on kinetics and model of coke loss reaction with CO2 in blast furnace[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 280-284.
|
13 |
丁子昭. 焦炭溶损反应机理的分子动力学研究[D]. 唐山: 华北理工大学, 2021.
|
|
Ding Z Z. Molecular dynamics study on the reaction mechanism of coke dissolution loss[D]. Tangshan: North China University of Science and Technology, 2021.
|
14 |
Li K J, Zhang H, Li G Y, et al. ReaxFF molecular dynamics simulation for the graphitization of amorphous carbon: a parametric study[J]. Journal of Chemical Theory and Computation, 2018, 14(5): 2322-2331.
|
15 |
田妍. 平遥焦炭微观结构的分子动力学研究[D]. 唐山: 华北理工大学, 2020.
|
|
Tian Y. Molecular dynamics study on microstructure of Pingyao coke[D]. Tangshan: North China University of Science and Technology, 2020.
|
16 |
Li K J, Li H T, Sun M M, et al. Atomic-scale understanding about coke carbon structural evolution by experimental characterization and ReaxFF molecular dynamics[J]. Energy & Fuels, 2019, 33(11): 10941-10952.
|
17 |
Marsusi F, Drummond N D, Verstraete M J. The physics of single-side fluorination of graphene: DFT and DFT + U studies[J]. Carbon, 2019, 144: 615-627.
|
18 |
郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
|
|
Zheng M, Li X X. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation[J]. CIESC Journal, 2022, 73(6): 2732-2741.
|
19 |
袁妮妮, 郭拓, 白红存, 等. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061.
|
|
Yuan N N, Guo T, Bai H C, et al. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation[J]. CIESC Journal, 2022, 73(9): 4054-4061.
|
20 |
Ge Z P, Wang Y. Estimation of nanodiamond surface charge density from zeta potential and molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15): 3394-3402.
|
21 |
Yang K Z, Yang G, Wu J Y. Insights into the enhancement of CO2 adsorption on faujasite with a low Si/Al ratio: understanding the formation sequence of adsorption complexes[J]. Chemical Engineering Journal, 2021, 404: 127056.
|
22 |
Chenoweth K, van Duin A C T, Dasgupta S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1740-1746.
|
23 |
马生贵, 田博文, 周雨薇, 等. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503.
|
|
Ma S G, Tian B W, Zhou Y W, et al. DFT study of adsorption of H2S on N-doped stone-wales defected graphene[J]. CIESC Journal, 2021, 72(9): 4496-4503.
|
24 |
玄伟伟, 董彦吾, 王海轮. 基于ReaxFF-MD和DFT的废旧PP塑料水蒸气气化机理研究[J]. 化工学报, 2022, 73(11): 5251-5262.
|
|
Xuan W W, Dong Y W, Wang H L. Study on the steam gasification mechanism of waste PP plastics based on ReaxFF-MD and DFT methods[J]. CIESC Journal, 2022, 73(11): 5251-5262.
|
25 |
俞夏琪, 冯格, 赵金燕, 等. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517.
|
|
Yu X Q, Feng G, Zhao J Y, et al. A first-principles study of the interaction between TDI-TMP-T313 and AP[J]. CIESC Journal, 2022, 73(8): 3511-3517.
|
26 |
刘佳, 姜桂元, 赵震, 等. Pt/TiO2/ZSM-5催化剂的制备及其催化转化正丁烷[J]. 化工学报, 2016, 67(8): 3363-3373.
|
|
Liu J, Jiang G Y, Zhao Z, et al. Preparation of Pt/TiO2/ZSM-5 catalyst for catalytic conversion of n-butane[J]. CIESC Journal, 2016, 67(8): 3363-3373.
|
27 |
Lei Z, Jiang J, Zhu G L, et al. Investigate the adsorption behavior of CO2 on char-inorganic compound model for coal gasification[J]. Energy & Fuels, 2016, 30(2): 1287-1293.
|
28 |
Mori A, Kubo S, Kudo S, et al. Preparation of high-strength coke by carbonization of hot-briquetted Victorian brown coal[J]. Energy & Fuels, 2012, 26(1): 296-301.
|
29 |
李佳, 梁贞菊, 王照亮, 等. 不同分子模型对甲烷水合物分解微观特性表征[J]. 化工学报, 2020, 71(3): 955-964.
|
|
Li J, Liang Z J, Wang Z L, et al. Characterization of microscopic nature of methane hydrate decomposition by different molecular models[J]. CIESC Journal, 2020, 71(3): 955-964.
|
30 |
Savvatimskiy A I. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963—2003)[J]. Carbon, 2005, 43(6): 1115-1142.
|
31 |
Wang X Y, Han T C, Fu L Y. Anisotropic elastic properties of montmorillonite with different layer charge densities and layer charge distributions through molecular dynamic simulation[J]. Frontiers in Earth Science, 2022, 10: 854816.
|
32 |
Peng C L, Song L L, Wang L, et al. Effect of surface charge distribution of phosphorus-doped MoS2 on hydrogen evolution reaction[J]. ACS Applied Energy Materials, 2021, 4(5): 4887-4896.
|
33 |
Zhao H M, Wu M M, Wang Q, et al. Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters[J]. Physica B: Condensed Matter, 2011, 406(22): 4322-4326.
|
34 |
Yan S S, Chen H R, Zhu H N, et al. Enhanced adsorption of bio-oil on activated biochar in slurry fuels and the adsorption selectivity[J]. Fuel, 2023, 338: 127224.
|
35 |
Taheri Z, Pour A N. Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation[J]. Journal of Molecular Modeling, 2021, 27(2): 59.
|
36 |
Furuya K, Hama T, Oba Y, et al. Diffusion activation energy and desorption activation energy for astrochemically relevant species on water ice show no clear relation[J]. The Astrophysical Journal Letters, 2022, 933(1): L16.
|
37 |
Li B, Li X, Gao W, et al. An effective scheme to determine surface energy and its relation with adsorption energy[J]. Acta Materialia, 2021, 212: 116895.
|
38 |
Lei Z, Yan J C, Xie R L, et al. Catalysis mechanism of solution loss reaction of metallurgical coke in blast furnace: experimental and modeling study[J]. Fuel, 2021, 290: 120025.
|
39 |
Tan M, Li T, Wang Z H, et al. Investigation on adsorption of sodium fluoro-aluminates on graphite by density functional theory[J]. Journal of Molecular Liquids, 2023, 373: 121252.
|
40 |
湛文龙, 孙崇, 余盈昌, 等. 高炉焦炭石墨化过程中的微观组织和冶金性能演变[J]. 工程科学学报, 2018, 40(6): 690-696.
|
|
Zhan W L, Sun C, Yu Y C, et al. Evolution of coke microstructure and metallurgical properties during graphitization in a blast furnace[J]. Chinese Journal of Engineering, 2018, 40(6): 690-696.
|