CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3457-3471.DOI: 10.11949/0438-1157.20230211
• Biochemical engineering and technology • Previous Articles Next Articles
Yan GAO1(), Peng WU1, Chao SHANG2, Zejun HU1, Xiaodong CHEN1()
Received:
2023-03-09
Revised:
2023-06-25
Online:
2023-10-18
Published:
2023-08-25
Contact:
Xiaodong CHEN
通讯作者:
陈晓东
作者简介:
高燕(1998—),女,硕士研究生,3479471548@qq.com
CLC Number:
Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties[J]. CIESC Journal, 2023, 74(8): 3457-3471.
高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471.
Fig.1 Spraying device for preparing MAM1—pressure reducing valve of steel cylinder; 2—N2 cylinder; 3-5—pressure regulating valve for gas pipelines, the corresponding nitrogen pressure is opening pressure (PS), atomization pressure (PZ), and water phase pressure (PM) respectively; 6-8—switches of gas pipelines; 9—liquid tank; 10—mechanical stirring device; 11—two-fluid nozzle; 12—receiving container (diameter 18 cm); 13—water bath heating device
Fig.5 Effect of atomization area on particle size of MAM(a) experimental schematic; (b),(c) particle size distribution curves; (d) variation of d32 with radial distanceat differentatomization pressure and volume fraction of MAM collected in different areas
Fig.6 Effect of water phase viscosity on particle size of MAM(a) relationship curve between the flow rate of CMC solution and the concentration of CMC; (b) rheological curves of the agarose solution (90℃); (c) particle size distribution curves; (d) variation of d32 with agarose concentration cA
Fig.7 Effect of water phase pressure on particle size of MAM(a) relationship curve between the flow rate of water and the pressure of water phase; (b) particle size distribution curves; (c) variation of d32 with water phase pressure PM
Fig.8 Effect of atomization pressure on particle size of MAM(a) relationship curve between the flow rate of gas and the atomization pressure; (b)-(d) particle size distribution curves; (e) variation of d32 with atomization pressure at different nozzle aperture
Fig.9 Effect of the bore diameter of the nozzles on particle size of MAM(a) relationship curve between the flow rate of water and the bore diameter of the nozzles; (b)-(e) particle size distribution curves; (f) variation of d32 with the bore diameter of the nozzles at different atomization pressure
Fig.12 SEM images of MAM prepared using different freeze-drying methods(a) AB, freeze-drying with water; (b) MAM, freeze-drying with water; (c) MAM, freeze-drying with tert-butyl alcohol; (d) CL-MAM, freeze-drying with tert-butyl alcohol
DEAE-MAM | 平均粒径d32/μm | E/(μmol/ml) | Qm/(mg/ml) | Kd | R2 |
---|---|---|---|---|---|
喷雾法(自制) | 36 | 192.5 | 150.0 | 0.0345 | 0.9927 |
86 | 148.2 | 143.4 | 0.0348 | 0.9729 | |
142 | 136.9 | 121.9 | 0.1029 | 0.9406 | |
乳化-冷却法[ | 50 | 100.6 | 129.4 | 0.0245 | 0.9941 |
文献[ | — | 168.0 | 109.3 | — | — |
Table 1 Equilibrium parameters of DEAE-MAM for BSA adsorbtion
DEAE-MAM | 平均粒径d32/μm | E/(μmol/ml) | Qm/(mg/ml) | Kd | R2 |
---|---|---|---|---|---|
喷雾法(自制) | 36 | 192.5 | 150.0 | 0.0345 | 0.9927 |
86 | 148.2 | 143.4 | 0.0348 | 0.9729 | |
142 | 136.9 | 121.9 | 0.1029 | 0.9406 | |
乳化-冷却法[ | 50 | 100.6 | 129.4 | 0.0245 | 0.9941 |
文献[ | — | 168.0 | 109.3 | — | — |
1 | Zhao L, Huang Y D, Zhu K, et al. Manipulation of pore structure during manufacture of agarose microspheres for bioseparation[J]. Engineering in Life Sciences, 2020, 20(11): 504-513. |
2 | Betancor L, Fuentes M, Dellamora-Ortiz G, et al. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 32(3): 97-101. |
3 | Kretzer J W, Lehmann R, Schmelcher M, et al. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells[J]. Applied and Environmental Microbiology, 2007, 73(6): 1992-2000. |
4 | Kim S Y, Kim Y J, Seong H. Ni-chelated poly(acrylic acid)-grafted magnetic agarose bead for affinity-based separation of proteins[J]. Macromolecular Research, 2021, 29(11): 825-831. |
5 | Levison P R, Badger S E, Dennis J, et al. Recent developments of magnetic beads for use in nucleic acid purification[J]. Journal of Chromatography A, 1998, 816(1): 107-111. |
6 | Šafařı́k I, Šafařı́ková M. Use of magnetic techniques for the isolation of cells[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 722(1-2): 33-53. |
7 | Tong X D, Sun Y. Application of magnetic agarose support in liquid magnetically stabilized fluidized bed for protein adsorption[J]. Biotechnology Progress, 2003, 19(6): 1721-1727. |
8 | 邱广亮, 栗淑媛, 金志兰, 等. 磁性琼脂糖复合微球的制备和性质[J]. 精细化工, 1999, 16(1): 38-41. |
Qiu G L, Li S Y, Jin Z L, et al. Preparation and characterization of magnetic agarose composite microspheres[J]. Fine Chemicals, 1999, 16(1): 38-41. | |
9 | Kim S Y, Seong H. Modulation of physicochemical properties of magnetic agarose microspheres by hydrolysis-suppressive sequential crosslinking[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127607. |
10 | Bengtsson S, Philipson L. Chromatography of animal viruses on pearl-condensed agar[J]. Biochimica et Biophysica Acta, 1964, 79: 399-406. |
11 | Sakai S, Hashimoto I, Kawakami K. Usefulness of flow focusing technology for producing subsieve-size cell enclosing capsules: application for agarose capsules production[J]. Biochemical Engineering Journal, 2006, 30(2): 218-221. |
12 | Zhou Q Z, Wang L Y, Ma G H, et al. Preparation of uniform-sized agarose beads by microporous membrane emulsification technique[J]. Journal of Colloid and Interface Science, 2007, 311(1): 118-127. |
13 | 姚敏, 庄壮, 梁健, 等. 外混合喷嘴液相孔尺寸对雾化性能的影响[J]. 石油化工, 2019, 48(2): 157-162. |
Yao M, Zhuang Z, Liang J, et al. Effect of liquid-phase pore sizes on the spraying performance varied in outside-atomization nozzles[J]. Petrochemical Technology, 2019, 48(2): 157-162. | |
14 | Jeong C S, Lee C Y. Experimental investigation on spray characteristics of twin-fluid nozzle for water mist and its heptane pool fire extinguishing performance[J]. Process Safety and Environmental Protection, 2021, 148: 724-736. |
15 | 施智雄, 潘科玮, 平力, 等. 喷嘴雾化参数轨迹图像法测量实验研究[J]. 化工学报, 2020, 71(8): 3527-3534. |
Shi Z X, Pan K W, Ping L, et al. Research on experimental measurement of spray parameters of nozzle by using trajectory imaging method[J]. CIESC Journal, 2020, 71(8): 3527-3534. | |
16 | 滕焕银, 张志朋. 水泥厂增湿塔喷水技术的发展简介[J]. 建材世界, 2022, 43(1): 51-53. |
Teng H Y, Zhang Z P. Development of water spraying technology for conditioning tower in cement plant[J]. The World of Building Materials, 2022, 43(1): 51-53. | |
17 | Barreras F, Lozano A, Barroso J, et al. Experimental characterization of industrial twin-fluid atomizers[J]. Atomization and Sprays, 2006, 16(2): 127-146. |
18 | Kemp I C, Hartwig T, Herdman R, et al. Spray drying with a two-fluid nozzle to produce fine particles: atomization, scale-up, and modeling[J]. Drying Technology, 2016, 34(10): 1243-1252. |
19 | Stähle P, Schuchmann H P, Gaukel V. Performance and efficiency of pressure-swirl and twin-fluid nozzles spraying food liquids with varying viscosity[J]. Journal of Food Process Engineering, 2017, 40(1): e12317. |
20 | Wang P F, Shi Y J, Zhang L Y, et al. Effect of structural parameters on atomization characteristics and dust reduction performance of internal-mixing air-assisted atomizer nozzle[J]. Process Safety and Environmental Protection, 2019, 128: 316-328. |
21 | 卢慧丽, 林东强, 姚善泾. 琼脂糖-DEAE离子交换介质的配基密度和孔径对BSA吸附的影响[J]. 化工学报, 2011, 62(11): 3164-3170. |
Lu H L, Lin D Q, Yao S J. Influences of ligand density and pore size on BSA adsorption on agarose-based DEAE-ion-exchange resins[J]. CIESC Journal, 2011, 62(11): 3164-3170. | |
22 | 王宇. 多功能载体固定蛋白A免疫吸附材料的制备及吸附性能研究[D]. 昆明: 云南师范大学, 2019. |
Wang Y. Preparation of immunosorbent using heterofunctional supports to immobilize protein A and study of its adsorption performance[D]. Kunming: Yunnan Normal University, 2019. | |
23 | Shi Q H, Zhou X, Sun Y. A novel superporous agarose medium for high-speed protein chromatography[J]. Biotechnology and Bioengineering, 2005, 92(5): 643-651. |
24 | Gad H M, Ibrahim I A, Abdel-baky M E, et al. Experimental study of diesel fuel atomization performance of air blast atomizer[J]. Experimental Thermal and Fluid Science, 2018, 99: 211-218. |
25 | 肖彬. 内混式两相流喷嘴的雾化特性研究[J]. 科学技术与工程, 2012, 12(27): 6912-6917. |
Xiao B. Studies on internal mixing twin fluid atomization characteristics[J]. Science Technology and Engineering, 2012, 12(27): 6912-6917. | |
26 | Lorenzetto G E, Lefebvre A H. Measurements of drop size on a plain-jet airblast atomizer[J]. AIAA Journal, 1977, 15(7): 1006-1010. |
27 | Han H, Wang P F, Li Y J, et al. Effect of water supply pressure on atomization characteristics and dust-reduction efficiency of internal mixing air atomizing nozzle[J]. Advanced Powder Technology, 2020, 31(1): 252-268. |
28 | Chen B, Gao D R, Li Y B, et al. Investigation of the droplet characteristics and size distribution during the collaborative atomization process of a twin-fluid nozzle[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3): 1625-1639. |
29 | Liu H, Cheng H Y, Dai Y, et al. Atomization characteristics of special-design pneumatic two-fluid nozzles for helicopter main reducers: a numerical and experimental investigation[J]. Aerospace, 2022, 9(12): 834. |
30 | Van Drooge D J, Hinrichs W L J, Frijlink H W. Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent[J]. Journal of Pharmaceutical Sciences, 2004, 93(3): 713-725. |
31 | 张敏, 韩林, 胡月月, 等. 改性琼脂糖微球固定化甘油脱氢酶的研究[J]. 过程工程学报, 2020, 20(5): 591-598. |
Zhang M, Han L, Hu Y Y, et al. Study of immobilized glycerol dehydrogenase on modified agarose microspheres[J]. The Chinese Journal of Process Engineering, 2020, 20(5): 591-598. | |
32 | Wang Y, Wei Y Y, Gao P C, et al. Preparation of Fe3O4@PMAA@Ni microspheres towards the efficient and selective enrichment of histidine-rich proteins[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 11166-11176. |
33 | Franke A, Forrer N, Butté A, et al. Role of the ligand density in cation exchange materials for the purification of proteins[J]. Journal of Chromatography A, 2010, 1217(15): 2216-2225. |
34 | Wrzosek K, Gramblička M, Polakovič M. Influence of ligand density on antibody binding capacity of cation-exchange adsorbents[J]. Journal of Chromatography A, 2009, 1216(25): 5039-5044. |
35 | 卢慧丽, 林东强, 朱咪咪, 等. 配基密度和介质孔径对离子交换层析分离蛋白质的影响[J]. 化工进展, 2011, 30(S2): 209-213. |
Lu H L, Lin D Q, Zhu M M, et al. Influences of ligand density and pore size on the protein adsorption with DEAE ion-exchange resins[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 209-213. | |
36 | 尚超, 陈历历, 黄明贤, 等. 一种连续化生产磁性琼脂糖凝胶微球的方法: 113967451A[P]. 2022-01-25. |
Shang C, Chen L L, Huang M X, et al. Method for continuously producing magnetic agarose gel microspheres: 113967451A[P]. 2022-01-25. | |
37 | 王国祥, 聂峰光, 苏志国. 琼脂糖凝胶偶联DEAE基团反应的影响因素[J]. 化学反应工程与工艺, 2002, 18(1): 80-85. |
Wang G X, Nie F G, Su Z G. Coupling reaction of diethylaminoethyl(DEAE) onto agarose gel[J]. Chemical Reaction Engineering and Technology, 2002, 18(1): 80-85. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[7] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[8] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[9] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[10] | Shiting XIE, Zhuang LIU, Rui XIE, Xiaojie JU, Wei WANG, Dawei PAN, Liangyin CHU. Study on preparation of poly(N-isopropylacrylamide-co-allylthiourea) smart microgels and responsive performance of Hg2+ [J]. CIESC Journal, 2023, 74(6): 2689-2698. |
[11] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[12] | Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964. |
[13] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[14] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[15] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 663
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||