CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 2898-2907.DOI: 10.11949/0438-1157.20230378
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yuying GUO1(), Jiaqiang JING1,2(), Wanni HUANG1, Ping ZHANG3, Jie SUN1,2, Yu ZHU1, Junxuan FENG1, Hongjiang LU1
Received:
2023-04-17
Revised:
2023-07-11
Online:
2023-08-31
Published:
2023-07-05
Contact:
Jiaqiang JING
郭雨莹1(), 敬加强1,2(), 黄婉妮1, 张平3, 孙杰1,2, 朱宇1, 冯君炫1, 陆洪江1
通讯作者:
敬加强
作者简介:
郭雨莹(1996—),女,博士研究生,ghswpu@163.com
基金资助:
CLC Number:
Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline[J]. CIESC Journal, 2023, 74(7): 2898-2907.
郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907.
Add to citation manager EndNote|Ris|BibTeX
序号 | Jo/(m/s) | Jw/(m/s) | Cw |
---|---|---|---|
1 | 0.12~0.13 | 0.10~1.54 | 0.43~0.93 |
2 | 0.24~0.25 | 0.10~1.53 | 0.27~0.86 |
3 | 0.35~0.36 | 0.09~1.52 | 0.20~0.81 |
4 | 0.46~0.47 | 0.08~1.50 | 0.14~0.77 |
5 | 0.56~0.57 | 0.07~1.48 | 0.11~0.73 |
6 | 0.66~0.67 | 0.07~1.47 | 0.09~0.69 |
7 | 0.75~0.76 | 0.05~1.47 | 0.07~0.66 |
8 | 0.84~0.85 | 0.05~1.44 | 0.05~0.63 |
9 | 0.92~0.93 | 0.04~1.41 | 0.04~0.60 |
Table 1 Experimental conditions of water-lubricated heavy oil drag reduction in horizontal pipes
序号 | Jo/(m/s) | Jw/(m/s) | Cw |
---|---|---|---|
1 | 0.12~0.13 | 0.10~1.54 | 0.43~0.93 |
2 | 0.24~0.25 | 0.10~1.53 | 0.27~0.86 |
3 | 0.35~0.36 | 0.09~1.52 | 0.20~0.81 |
4 | 0.46~0.47 | 0.08~1.50 | 0.14~0.77 |
5 | 0.56~0.57 | 0.07~1.48 | 0.11~0.73 |
6 | 0.66~0.67 | 0.07~1.47 | 0.09~0.69 |
7 | 0.75~0.76 | 0.05~1.47 | 0.07~0.66 |
8 | 0.84~0.85 | 0.05~1.44 | 0.05~0.63 |
9 | 0.92~0.93 | 0.04~1.41 | 0.04~0.60 |
1 | Muñoz J A D, Ancheyta J, Castañeda L C. Required viscosity values to ensure proper transportation of crude oil by pipeline[J]. Energy & Fuels, 2016, 30(11): 8850-8854. |
2 | Muñoz J A D, Ancheyta J. Techno-economic analysis of heating techniques for transportation of heavy crude oils by land pipeline[J]. Fuel, 2023, 331: 125640. |
3 | 马艳红, 陆江银, 胡子昭, 等. 响应面法优化制备戊烯/辛烯/十二烯共聚物减阻剂[J]. 化工学报, 2017, 68(5): 2195-2203. |
Ma Y H, Lu J Y, Hu Z Z, et al. Preparation of 1-pentene/1-octene/1-dodecene terpolymer drag reducer by response surface method[J]. CIESC Journal, 2017, 68(5): 2195-2203. | |
4 | Nesyn G V, Sunagatullin R Z, Shibaev V P, et al. Drag reduction in transportation of hydrocarbon liquids: from fundamentals to engineering applications[J]. Journal of Petroleum Science and Engineering, 2018, 161: 715-725. |
5 | Al-Adwani H, Al-Mulla A. The analysis of drag reduction in Kuwaiti crude oil samples using surfactants and polyacrylamide[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(3): 2235-2245. |
6 | 药辉. 稠油掺稀降黏规律及沥青质稳定性研究[D]. 东营:中国石油大学(华东), 2018. |
Yao H. Study on viscosity reduction law of heavy oil blending and asphaltene stability[D]. Dongying: China University of Petroleum (Huadong), 2018. | |
7 | Yaghi B M, Al-Bemani A. Heavy crude oil viscosity reduction for pipeline transportation[J]. Energy Sources, 2002, 24(2): 93-102. |
8 | Ashrafizadeh S N, Kamran M. Emulsification of heavy crude oil in water for pipeline transportation[J]. Journal of Petroleum Science and Engineering, 2010, 71(3/4): 205-211. |
9 | dos Santos R G, Brinceño M I, Loh W. Laminar pipeline flow of heavy oil-in-water emulsions produced by continuous in-line emulsification[J]. Journal of Petroleum Science and Engineering, 2017, 156: 827-834. |
10 | Bensakhria A, Peysson Y, Antonini G. Experimental study of the pipeline lubrication for heavy oil transport[J]. Oil & Gas Science and Technology, 2004, 59(5): 523-533. |
11 | Cavicchio C A M, Biazussi J L, de Castro M S, et al. Experimental study of viscosity effects on heavy crude oil-water core-annular flow pattern[J]. Experimental Thermal and Fluid Science, 2018, 92: 270-285. |
12 | Sun J, Guo L J, Fu J Q, et al. A new model for viscous oil-water eccentric core annular flow in horizontal pipes[J]. International Journal of Multiphase Flow, 2022, 147: 103892. |
13 | Babakhani Dehkordi P, Colombo L P M, Mohammadian E, et al. The influence of abruptly variable cross-section on oil core eccentricity and flow characteristics during viscous oil-water horizontal flow[J]. Experimental Thermal and Fluid Science, 2019, 105: 261-277. |
14 | Ooms G, Pourquie M J B M, Poesio P. Numerical study of eccentric core-annular flow[J]. International Journal of Multiphase Flow, 2012, 42: 74-79. |
15 | Ameri M, Tirandaz N. Two-phase flow in a wavy core-annular configuration through a vertical pipe: analytical model for pressure drop in upward flow[J]. International Journal of Mechanical Sciences, 2017, 126: 151-160. |
16 | Sotgia G, Tartarini P, Stalio E. Experimental analysis of flow regimes and pressure drop reduction in oil-water mixtures[J]. International Journal of Multiphase Flow, 2008, 34(12): 1161-1174. |
17 | Strazza D, Grassi B, Demori M, et al. Core-annular flow in horizontal and slightly inclined pipes: existence, pressure drops, and hold-up[J]. Chemical Engineering Science, 2011, 66(12): 2853-2863. |
18 | van Duin E, Henkes R, Ooms G. Influence of oil viscosity on oil-water core-annular flow through a horizontal pipe[J]. Petroleum, 2019, 5(2): 199-205. |
19 | Jing J Q, Yin X Y, Mastobaev B N, et al. Experimental study on highly viscous oil-water annular flow in a horizontal pipe with 90° elbow[J]. International Journal of Multiphase Flow, 2021, 135: 103499. |
20 | Ooms G, Vuik C, Poesio P. Core-annular flow through a horizontal pipe: hydrodynamic counterbalancing of buoyancy force on core[J]. Physics of Fluids, 2007, 19(9): 092103. |
21 | Sahu K C. A new linearly unstable mode in the core-annular flow of two immiscible fluids[J]. Journal of Fluid Mechanics, 2021, 918: A11. |
22 | Joseph D D, Renardy Y Y. Fundamentals of Two-Fluid Dynamics (Part Ⅱ): Lubricated Transport, Drops and Miscible Liquids[M]. New York: Springer New York, 2013: 17-225. |
23 | Brauner N. Liquid-liquid two-phase flow systems[M]//Modelling and Experimentation in Two-Phase Flow. Vienna: Springer Vienna, 2003: 221-279. |
24 | Arney M S, Bai R, Guevara E, et al. Friction factor and holdup studies for lubricated pipelining(Ⅰ): Experiments and correlations[J]. International Journal of Multiphase Flow, 1993, 19(6): 1061-1076. |
25 | Bannwart A C. A simple model for pressure drop in horizontal core annular flow[J]. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 1999, 21(2): 233-244. |
26 | McKibben M J, Gillies R G, Shook C A. Predicting pressure gradients in heavy oil-water pipelines[J]. The Canadian Journal of Chemical Engineering, 2000, 78(4): 752-756. |
27 | Rodriguez O M H, Bannwart A C, de Carvalho C H M. Pressure loss in core-annular flow: modeling, experimental investigation and full-scale experiments[J]. Journal of Petroleum Science and Engineering, 2009, 65(1/2): 67-75. |
28 | Colombo L P M, Guilizzoni M, Sotgia G, et al. Water holdup estimation from pressure drop measurements in oil-water two-phase flows by means of the two-fluid model[J]. Journal of Physics: Conference Series, 2017, 923(1): 012012. |
29 | White F M. Fluid Mechanics[M]. 7th ed. New York: McGraw-Hill, 2008: 352-355. |
30 | Bannwart A C. Modeling aspects of oil-water core-annular flows[J]. Journal of Petroleum Science and Engineering, 2001, 32(2/3/4): 127-143. |
31 | Russell T W F, Charles M E. The effect of the less viscous liquid in the laminar flow of two immiscible liquids[J]. The Canadian Journal of Chemical Engineering, 1959, 37(1): 18-24. |
32 | Oliemans R V A, Ooms G. Core-annular flow of oil and water[J]. Multiphase Science and Technology, 1986, 2(1/2/3/4): 427-476. |
33 | Brauner N. Two-phase liquid-liquid annular flow[J]. International Journal of Multiphase Flow, 1991, 17(1): 59-76. |
34 | Brauner N, Ullmann A. Modeling of phase inversion phenomenon in two-phase pipe flows[J]. International Journal of Multiphase Flow, 2002, 28(7): 1177-1204. |
35 | Colombo L P M, Guilizzoni M, Sotgia G M. Characterization of the critical transition from annular to wavy-stratified flow for oil-water mixtures in horizontal pipes[J]. Experiments in Fluids, 2012, 53(5):1617-1625. |
36 | Shi J, Lao L Y, Yeung H. Water-lubricated transport of high-viscosity oil in horizontal pipes: the water holdup and pressure gradient[J]. International Journal of Multiphase Flow, 2017, 96: 70-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||