1 |
Company BP. BP Statistical Review of World Energy 2021[M]. London: BP, 2021.
|
2 |
Ji W T, Zhao C Y, Zhang D C, et al. Influence of condensate inundation on heat transfer of R134a condensing on three dimensional enhanced tubes and integral-fin tubes with high fin density[J]. Applied Thermal Engineering, 2012, 38: 151-159.
|
3 |
Ji W T, Zhao C Y, Zhang D C, et al. Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes[J]. International Journal of Heat and Mass Transfer, 2014, 77: 194-201.
|
4 |
Zhao C Y, Ji W T, Jin P H, et al. The influence of surface structure and thermal conductivity of the tube on the condensation heat transfer of R134a and R404A over single horizontal enhanced tubes[J]. Applied Thermal Engineering, 2017, 125: 1114-1122.
|
5 |
Zhang Z, Li Q, Xu T, et al. Effect of fin pitch, fin height, and bundle depth on condensation of R134a, R1234yf, and R1234ze in bundles of integral finned tubes[C]//Proceedings of the DKV-Conference. Duesseldorf, Germany, 2014.
|
6 |
Ji W T, Lu X D, Yu Q N, et al. Film-wise condensation of R-134a, R-1234ze(E) and R-1233zd(E) outside the finned tubes with different fin thickness[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118829.
|
7 |
Briggs A, Rose J W. Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube[J]. International Journal of Heat and Mass Transfer, 1994, 37: 457-463.
|
8 |
Al-Badri A R, Gebauer T, Leipertz A, et al. Element by element prediction model of condensation heat transfer on a horizontal integral finned tube[J]. International Journal of Heat and Mass Transfer, 2013, 62: 463-472.
|
9 |
Zhang Z G, Li Q X, Xu T, et al. Condensation heat transfer characteristics of zeotropic refrigerant mixture R407C on single, three-row petal-shaped finned tubes and helically baffled condenser[J]. Applied Thermal Engineering, 2012, 39: 63-69.
|
10 |
Gstoehl D, Thome J R. Film condensation of R-134a on tube arrays with plain and enhanced surfaces (Ⅰ): Experimental heat transfer coefficients[J]. Journal of Heat Transfer, 2006, 128(1): 21-32.
|
11 |
卢雅聪,李文玲.竖直管外蒸汽冷凝传热过程的CFD模拟[J].中国安全生产科学技术,2021,17(S1):115-120.
|
|
Lu Y C, Li W L. CFD simulation of steam condensation heat transfer process outside the vertical tube[J]. Journal of Safety Science and Technology, 2021,17(S1):115-120.
|
12 |
贾利梅.小管径水平圆管管外冷凝传热数值分析[J].流体机械,2020,48(7):84-88.
|
|
Jia L M. Numerical analysis of condensation heat transfer for small diameter horizontal circular tubes[J]. Fluid Machinery, 2020,48(7):84-88.
|
13 |
张璐,刘金平.水平管内的过热冷凝传热性能数值模拟[J].工业炉,2021,43(4):1-5.
|
|
Zhang L, Liu J P. Numerical simulation of superheated condensation heat transfer performance in horizontal tube[J]. Industrial Furnace, 2021,43(4):1-5.
|
14 |
周梦,虞斌,曹宇.空气-水蒸气混合气体在换热圆管内外冷凝相变数值研究[J].石油化工设备,2019,48(1):40-47.
|
|
Zhou M, Yu B, Cao Y. Numerical study on condensation behaviors of air-vapor mixture within and outside of heat exchange pipes[J]. Petro-Chemical Equipment, 2019,48(1):40-47.
|
15 |
Gebauer T, Al-Badri A R, Gotterbarm A, et al. Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 516-524.
|
16 |
Kleiner T, Rehfeldt S, Klein H. CFD model and simulation of pure substance condensation on horizontal tubes using the volume of fluid method[J]. International Journal of Heat and Mass Transfer, 2019, 138: 420-431.
|
17 |
Kleiner T, Eder A, Rehfeldt S, et al. Detailed CFD simulations of pure substance condensation on horizontal annular low finned tubes including a parameter study of the fin slope[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120363.
|
18 |
蒋淳,陈振乾.水平管外降膜蒸发流动和传热特性数值模拟[J].化工学报,2018,69(10):4224-4230.
|
|
Jiang C, Chen Z Q. Numerical simulation of fluid flow and heat transfer characteristics of falling film evaporation outside horizontal tubes[J]. CIESC Journal, 2018, 69(10): 4224-4230.
|
19 |
Sattari E, Delavar M A, Fattahi E, et al. Numerical investigation the effects of working parameters on nucleate pool boiling[J]. International Communications in Heat and Mass Transfer, 2014, 59: 106-113.
|
20 |
Gnielinski V. New equations for heat and mass transfer in the turbulent flow in pipes and channels[J]. NASA Sti/recon Technical Report A, 1975, 75(2):8-16.
|
21 |
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
|
22 |
Hirt C W, Nichols B D. A computational method for free surface hydrodynamics[J]. Journal of Pressure Vessel Technology, 1981, 103(2): 136-141.
|
23 |
Hasanpour B, Irandoost M S, Hassani M, et al. Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions[J]. Heat and Mass Transfer, 2018, 54(7): 1925-1936.
|
24 |
Lee J, O'Neill L E, Lee S, et al. Experimental and computational investigation on two-phase flow and heat transfer of highly subcooled flow boiling in vertical upflow[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1199-1216.
|
25 |
Lee W H. Pressure Iteration Scheme for Two-Phase Flow Modeling[M]. Washington DC, USA: Hemisphere Publishing, 1980.
|
26 |
Bahreini M, Ramiar A, Ranjbar A A. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient[J]. Nuclear Engineering and Design, 2015, 293: 238-248.
|
27 |
Zhu H J, Li S. Numerical analysis of mitigating elbow erosion with a rib[J]. Powder Technology, 2018, 330: 445-460.
|
28 |
Li Y, Sun F, Xie G, et al. Numerical investigation on flow and thermal performance of supercritical CO2 in horizontal cylindrically concaved tubes [J].Applied Thermal Engineering, 2019, 153: 655-668.
|
29 |
Nusselt W. The surface condensation of water vapour[J]. Zeitschrift Des Vereines Deutscher Ingenieure,1916 60: 541-546.
|