[1] |
Whitesides G M.The origins and the future of microfluidics[J].Nature, 2006,442:368-373
|
[2] |
Garstecki P,Gitlin I,DiLuzio W, Whitesides G M, Kumacheva E,Stone H A.Formation of monodisperse bubbles in a microfluidic flow-focusing device[J].Applied Physics Letters, 2004,85:2649-2651
|
[3] |
Ganan-Calvo A M.Perfectly monodisperse microbubbling by capillary flow focusing:an alternate physical description and universal scaling[J].Phys.Rev.E, 2004,69:027301
|
[4] |
Luo G S, Xu J H, Li S W, Tan J, Wang Y J.Preparation of highly monodisperse droplet in a T-junction microfluidic device[J].AIChE J., 2006,52:3005-3010
|
[5] |
Anna S L, Bontoux N, Stone H A.Formation of dispersions using "flow focusing" in microchannels[J].Applied Physics Letters, 2003,82:364-366
|
[6] |
Takeuchi S, Garstecki P, Weibel D B, Whitesides G M.An axisymmetric flow-focusing microfluidic device[J].Adv.Mater., 2005,17:1067-1072
|
[7] |
Okushima S, Nisisako T, Torii T, Higuchi T.Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices[J].Langmuir, 2004,20:9905-9908
|
[8] |
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device[J].Phys.Rev.Lett., 2001,86:4163-4166
|
[9] |
Tice J D, Song H, Lyon A D, Ismagilov R F.Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers[J].Langmuir, 2003,19:9127-9133
|
[10] |
Gunther A, Khan S A, Thalmann M, Trachsel F, Jensen K F.Transport and reaction in microscale segmented gas-liquid flow[J].Lab on a Chip, 2004,4:278-286
|
[11] |
Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A.Monodisperse double emulsions generated from a microcapillary device[J].Science, 2005,308:537-541
|
[12] |
Garstecki P, Fuerstman M J, Stone H A, Whitesides G M.Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up[J].Lab on a Chip, 2006,6:437-446
|
[13] |
van Steijn V,Kreutzer M T, Kleijn C R.mu-PIV study of the formation of segmented flow in microfluidic T-junctions[J].Chemical Engineering Science, 2007,62:7505-7514
|
[14] |
Dai L,Cai W F, Xin F.Numerical study on bubble formation of a gas-liquid flow in a T-junction microchannel[J].Chemical Engineering & Technology, 2009,32:1984-1991
|
[15] |
Fries D, von Rohr P R.Impact of inlet design on mass transfer in gas-liquid rectangular microchannels[J].Microfluidics and Nanofluidics, 2009,6:27-35
|
[16] |
Tan J, Du L, Xu J H, Wang K, Luo G S.Surfactant-free microdispersion process of gas in organic solvents in microfluidic devices[J].AIChE J., 2011,57:2647-2656
|
[17] |
Youngs D L.Time-dependent multi-material flow with large fluid distortion//Morton K W,Baines M J.Numerical Methods for Fluid Dynamics[M].New York:Academic Press, 1982:274-285
|
[18] |
Hirt C W,Nichols B D.Volume of fluid(VOF)method for the dynamics of free boundaries[J].J. Comput. Phys., 1981,39:201-225
|
[19] |
Brackbill J U,Kothe D B, Zemach C.A continuum method for modeling surface tension[J].J.Comput.Phys., 1992,100:335-354
|
[20] |
Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting[J].J.Comput.Phys., 1986,62:40-65
|
[21] |
Taha T,Cui Z F.CFD modelling of slug flow in vertical tubes[J].Chemical Engineering Science, 2006,61:676-687
|
[22] |
Qian D Y, Lawal A.Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J].Chemical Engineering Science, 2006,61:7609-7625
|
[23] |
Talimi V, Muzychka Y S, Kocabiyik S.A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels[J].International Journal of Multiphase Flow, 2012,39:88-104
|