CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4466-4474.DOI: 10.11949/0438-1157.20230942
• Thermodynamics • Previous Articles Next Articles
Xiaodong HONG1(), Xuan DONG2, Meijin LIN2, Zuwei LIAO2(
), Congjing REN3, Yao YANG2, Binbo JIANG2, Jingdai WANG2, Yongrong YANG2
Received:
2023-09-11
Revised:
2023-11-14
Online:
2024-01-22
Published:
2023-11-25
Contact:
Zuwei LIAO
洪小东1(), 董轩2, 林美金2, 廖祖维2(
), 任聪静3, 杨遥2, 蒋斌波2, 王靖岱2, 阳永荣2
通讯作者:
廖祖维
作者简介:
洪小东(1991—),男,博士,研究员,hongxiaodong@zju.edu.cn
基金资助:
CLC Number:
Xiaodong HONG, Xuan DONG, Meijin LIN, Zuwei LIAO, Congjing REN, Yao YANG, Binbo JIANG, Jingdai WANG, Yongrong YANG. Prediction of thermodynamic properties of hydrocarbon working fluids by graph neural network models[J]. CIESC Journal, 2023, 74(11): 4466-4474.
洪小东, 董轩, 林美金, 廖祖维, 任聪静, 杨遥, 蒋斌波, 王靖岱, 阳永荣. 图神经网络预测烃类工质的热力学性质[J]. 化工学报, 2023, 74(11): 4466-4474.
数据集 | 模型输入:模型输出 | 数量 |
---|---|---|
#1 | SMILES:Tc (℃) | 2508 |
#2 | SMILES + T:Heva (J/mol) | 44717 |
#3 | SMILES + T:Cpg (J/(mol·℃)) | 44717 |
#4 | SMILES + T:Cpl (J/(mol·℃)) | 44717 |
Table 1 Summary of database
数据集 | 模型输入:模型输出 | 数量 |
---|---|---|
#1 | SMILES:Tc (℃) | 2508 |
#2 | SMILES + T:Heva (J/mol) | 44717 |
#3 | SMILES + T:Cpg (J/(mol·℃)) | 44717 |
#4 | SMILES + T:Cpl (J/(mol·℃)) | 44717 |
链烃 | 环烃 | 芳烃 |
---|---|---|
'CH3', 'CH2', 'CH', 'C', 'CH2![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 'CH2(cyclic)', 'CH(cyclic)', 'C(cyclic)', 'CH![]() ![]() ![]() ![]() ![]() ![]() | 'aC—Cl', 'aC—F', 'aCH', 'aC' |
Table 2 Molecular groups of database
链烃 | 环烃 | 芳烃 |
---|---|---|
'CH3', 'CH2', 'CH', 'C', 'CH2![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 'CH2(cyclic)', 'CH(cyclic)', 'C(cyclic)', 'CH![]() ![]() ![]() ![]() ![]() ![]() | 'aC—Cl', 'aC—F', 'aCH', 'aC' |
特征 | 描述 | 维度 |
---|---|---|
原子类型 | 原子类型(C, Cl, F, O) | 4 |
是否成环 | 原子是否在成环体系中 | 1 |
是否芳香性 | 原子是否是芳香体系的一部分 | 1 |
杂化 | sp, sp2, sp3, sp3d, sp3d2 | 5 |
键数目 | 原子相连的键数目(0~6) | 7 |
氢原子数目 | 原子相连的氢原子数目(0~3) | 4 |
Table 3 Atomic features used as node features
特征 | 描述 | 维度 |
---|---|---|
原子类型 | 原子类型(C, Cl, F, O) | 4 |
是否成环 | 原子是否在成环体系中 | 1 |
是否芳香性 | 原子是否是芳香体系的一部分 | 1 |
杂化 | sp, sp2, sp3, sp3d, sp3d2 | 5 |
键数目 | 原子相连的键数目(0~6) | 7 |
氢原子数目 | 原子相连的氢原子数目(0~3) | 4 |
特征 | 描述 | 维度 |
---|---|---|
键类别 | 单键、双键、叁键或芳香键 | 4 |
共轭 | 键是否共轭 | 1 |
成环 | 键是否属于环结构 | 1 |
立体 | 无、任意、E、Z、顺式、反式 | 6 |
Table 4 Bond features used as edge features
特征 | 描述 | 维度 |
---|---|---|
键类别 | 单键、双键、叁键或芳香键 | 4 |
共轭 | 键是否共轭 | 1 |
成环 | 键是否属于环结构 | 1 |
立体 | 无、任意、E、Z、顺式、反式 | 6 |
指标 | 训练/验证/测试 | 训练/测试[ |
---|---|---|
均方根误差,RMSE | 13.2/14.4/13.6 | — |
平均绝对误差,MAE | 9.1/10.1/9.7 | 22.5/22.8 |
决定系数,R2 | 0.98/0.98/0.97 | — |
Table 5 Statistical results of the training set, validation set and test set by Tc prediction model
指标 | 训练/验证/测试 | 训练/测试[ |
---|---|---|
均方根误差,RMSE | 13.2/14.4/13.6 | — |
平均绝对误差,MAE | 9.1/10.1/9.7 | 22.5/22.8 |
决定系数,R2 | 0.98/0.98/0.97 | — |
指标 | 训练/验证/测试 | 训练/测试[ | 训练/测试[ |
---|---|---|---|
均方根误差,RMSE | 896.3/958.0/971.8 | — | 2470.0 |
平均绝对误差,MAE | 342.9/393.3/403.0 | 2499.0 | — |
决定系数,R2 | 0.99/0.99/0.99 | 0.97 | 0.97 |
Table 6 Statistical results of the training set, validation set and test set by Heva prediction model
指标 | 训练/验证/测试 | 训练/测试[ | 训练/测试[ |
---|---|---|---|
均方根误差,RMSE | 896.3/958.0/971.8 | — | 2470.0 |
平均绝对误差,MAE | 342.9/393.3/403.0 | 2499.0 | — |
决定系数,R2 | 0.99/0.99/0.99 | 0.97 | 0.97 |
指标 | 训练/验证/测试 | |
---|---|---|
Cpg | Cpl | |
均方根误差,RMSE | 2.5/3.3/2.5 | 3.1/3.6/3.4 |
平均绝对误差,MAE | 1.4/1.7/1.6 | 1.6/1.9/1.9 |
决定系数,R2 | 1.00/1.00/1.00 | 1.00/1.00/1.00 |
Table 7 Statistical results of the training set, validation set and test set by Cpg and Cpl prediction models
指标 | 训练/验证/测试 | |
---|---|---|
Cpg | Cpl | |
均方根误差,RMSE | 2.5/3.3/2.5 | 3.1/3.6/3.4 |
平均绝对误差,MAE | 1.4/1.7/1.6 | 1.6/1.9/1.9 |
决定系数,R2 | 1.00/1.00/1.00 | 1.00/1.00/1.00 |
序号 | SMILES | Tc/℃ | Heva@0.9Tc/(J/mol) | Cpg@0.9Tc/(J/(mol·℃)) | Cpl @0.9Tc/(J/(mol·℃)) |
---|---|---|---|---|---|
1 | FC(F)![]() ![]() | 172.4 | 15988.5 | 194.5 | 227.7 |
2 | FC(F)![]() | 218.4 | 18425.0 | 239.4 | 268.0 |
3 | CC1C![]() | 273.2 | 22472.0 | 269.5 | 305.5 |
4 | CC![]() ![]() | 334.6 | 22170.4 | 362.0 | 329.5 |
5 | CC![]() ![]() | 347.9 | 23476.0 | 392.1 | 362.1 |
6 | CCC(CF)(CC(C)![]() ![]() | 357.8 | 24531.6 | 393.1 | 368.3 |
7 | CC(C)![]() ![]() | 366.4 | 27816.5 | 378.8 | 346.4 |
8 | FC1CC![]() ![]() | 374.8 | 25305.4 | 327.0 | 312.6 |
9 | FC1![]() ![]() | 383.7 | 25063.7 | 350.4 | 329.9 |
10 | CC1![]() ![]() | 396.5 | 26709.4 | 330.9 | 355.6 |
Table 8 Prediction results of Tc, Heva, Cpg and Cpl for 10 HFO molecules
序号 | SMILES | Tc/℃ | Heva@0.9Tc/(J/mol) | Cpg@0.9Tc/(J/(mol·℃)) | Cpl @0.9Tc/(J/(mol·℃)) |
---|---|---|---|---|---|
1 | FC(F)![]() ![]() | 172.4 | 15988.5 | 194.5 | 227.7 |
2 | FC(F)![]() | 218.4 | 18425.0 | 239.4 | 268.0 |
3 | CC1C![]() | 273.2 | 22472.0 | 269.5 | 305.5 |
4 | CC![]() ![]() | 334.6 | 22170.4 | 362.0 | 329.5 |
5 | CC![]() ![]() | 347.9 | 23476.0 | 392.1 | 362.1 |
6 | CCC(CF)(CC(C)![]() ![]() | 357.8 | 24531.6 | 393.1 | 368.3 |
7 | CC(C)![]() ![]() | 366.4 | 27816.5 | 378.8 | 346.4 |
8 | FC1CC![]() ![]() | 374.8 | 25305.4 | 327.0 | 312.6 |
9 | FC1![]() ![]() | 383.7 | 25063.7 | 350.4 | 329.9 |
10 | CC1![]() ![]() | 396.5 | 26709.4 | 330.9 | 355.6 |
1 | Zhang S, Chen W Y. China's energy transition pathway in a carbon neutral vision[J]. Engineering, 2022, 14: 64-76. |
2 | Lin Q Y, Zhang X, Wang T, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32. |
3 | Geffroy C, Lilley D, Parez P S, et al. Techno-economic analysis of waste-heat conversion[J]. Joule, 2021, 5(12): 3080-3096. |
4 | Imran M, Pili R, Usman M, et al. Dynamic modeling and control strategies of organic Rankine cycle systems: methods and challenges[J]. Applied Energy, 2020, 276: 115537. |
5 | Bellos E, Tzivanidis C. Investigation of a hybrid ORC driven by waste heat and solar energy[J]. Energy Conversion and Management, 2018, 156: 427-439. |
6 | da Silva Morais P H, Lodi A, Aoki A C, et al. Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant[J]. Renewable Energy, 2020, 157: 1131-1147. |
7 | Chitgar N, Hemmati A, Sadrzadeh M. A comparative performance analysis, working fluid selection, and machine learning optimization of ORC systems driven by geothermal energy[J]. Energy Conversion and Management, 2023, 286: 117072. |
8 | Nondy J, Gogoi T K. Exergoeconomic investigation and multi-objective optimization of different ORC configurations for waste heat recovery: a comparative study[J]. Energy Conversion and Management, 2021, 245: 114593. |
9 | Schwöbel J A H, Preißinger M, Brüggemann D, et al. High-throughput screening of working fluids for the organic Rankine cycle (ORC) based on conductor-like screening model for realistic solvation (COSMO-RS) and thermodynamic process simulations[J]. Industrial & Engineering Chemistry Research, 2017, 56(3): 788-798. |
10 | Dong X A, Liao Z W, Sun J Y, et al. Simultaneous optimization for organic Rankine cycle design and heat integration[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20455-20471. |
11 | Dong X A, Liao Z W, Sun J Y, et al. Simultaneous optimization of a heat exchanger network and operating conditions of organic Rankine cycle[J]. Industrial & Engineering Chemistry Research, 2020, 59(25): 11596-11609. |
12 | 王羽鹏, 梁俊伟, 罗向龙, 等. 基于神经网络的有机朗肯循环过程及循环性能计算方法[J]. 化工学报, 2019, 70(9): 3256-3266. |
Wang Y P, Liang J W, Luo X L, et al. Novel prediction method of process and system performance for organic Rankine cycle based on neural network[J]. CIESC Journal, 2019, 70(9): 3256-3266. | |
13 | 李子航, 王占博, 苗政, 等. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495. |
Li Z H, Wang Z B, Miao Z, et al. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC Journal, 2021, 72(9): 4487-4495. | |
14 | Fouad W A, Vega L F. Next generation of low global warming potential refrigerants: thermodynamic properties molecular modeling[J]. AIChE Journal, 2018, 64(1): 250-262. |
15 | Nair V. HFO refrigerants: a review of present status and future prospects[J]. International Journal of Refrigeration, 2021, 122: 156-170. |
16 | 龚正. 分子动力学模拟预测工业流体的热力学性质的方法研究[D]. 上海: 上海交通大学, 2019. |
Gong Z. Study on the method of molecular dynamics simulation to predict the thermodynamic properties of industrial fluids[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
17 | Xu Y H, Huang X, Li C P, et al. Predicting structure-dependent properties directly from the three dimensional molecular images via convolutional neural networks[J]. AIChE Journal, 2022, 68(8): e17721. |
18 | Walters W P, Barzilay R. Applications of deep learning in molecule generation and molecular property prediction[J]. Accounts of Chemical Research, 2021, 54(2): 263-270. |
19 | Zhang J, Wang Q, Su Y, et al. An accurate and interpretable deep learning model for environmental properties prediction using hybrid molecular representations[J]. AIChE Journal, 2022, 68(6): e17634. |
20 | Altintas C, Altundal O F, Keskin S, et al. Machine learning meets with metal organic frameworks for gas storage and separation[J]. Journal of Chemical Information and Modeling, 2021, 61(5): 2131-2146. |
21 | Moghadam P Z, Rogge S M J, Li A, et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning[J]. Matter, 2019, 1(1): 219-234. |
22 | Wang S H, Cheng M, Luo L, et al. High-throughput screening of metal-organic frameworks for hydrogen purification[J]. Chemical Engineering Journal, 2023, 451: 138436. |
23 | Schweidtmann A M, Rittig J G, König A, et al. Graph neural networks for prediction of fuel ignition quality[J]. Energy & Fuels, 2020, 34(9): 11395-11407. |
24 | Liu R C, Liu R Z, Liu Y F, et al. Design of fuel molecules based on variational autoencoder[J]. Fuel, 2022, 316: 123426. |
25 | Alshehri A S, Tula A K, You F Q, et al. Next generation pure component property estimation models: with and without machine learning techniques[J]. AIChE Journal, 2022, 68(6): e17469. |
26 | Yan X, Lan T, Jia Q Z, et al. A norm indexes-based QSPR model for predicting the standard vaporization enthalpy and formation enthalpy of organic compounds[J]. Fluid Phase Equilibria, 2020, 507: 112437. |
27 | Aouichaoui A R N, Fan F, Abildskov J, et al. Application of interpretable group-embedded graph neural networks for pure compound properties[J]. Computers & Chemical Engineering, 2023, 176: 108291. |
28 | Wang Y Y, Wang J R, Cao Z L, et al. Molecular contrastive learning of representations via graph neural networks[J]. Nature Machine Intelligence, 2022, 4(3): 279-287. |
29 | Morris C, Ritzert M, Fey M, et al. Weisfeiler and leman go neural: higher-order graph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 4602-4609. |
30 | Su Y, Wang Z H, Jin S M, et al. An architecture of deep learning in QSPR modeling for the prediction of critical properties using molecular signatures[J]. AIChE Journal, 2019, 65(9): e16678. |
[1] | Xi WU, Zudi OU, Xinjie ZHANG, Shiming XU, Xiaojing ZHU. Experimental study on the flammability of HFO-1243zf [J]. CIESC Journal, 2023, 74(S1): 346-352. |
[2] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[5] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[6] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[7] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[8] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[9] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[12] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[13] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[14] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||