CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4820-4828.DOI: 10.11949/0438-1157.20230861
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jiaxu LI1,2(), Ying HUAI1(
), Tingting LIU1, Yingchun LIU1
Received:
2023-08-21
Revised:
2023-10-05
Online:
2024-02-19
Published:
2023-12-25
Contact:
Ying HUAI
通讯作者:
怀英
作者简介:
李佳旭(1994—),女,博士研究生,lijiaxu@dicp.ac.cn
基金资助:
CLC Number:
Jiaxu LI, Ying HUAI, Tingting LIU, Yingchun LIU. Study on the full model of spiral wound heat exchanger[J]. CIESC Journal, 2023, 74(12): 4820-4828.
李佳旭, 怀英, 刘婷婷, 刘应春. 缠绕管式换热器全模型研究[J]. 化工学报, 2023, 74(12): 4820-4828.
层数 | N | ||
---|---|---|---|
1 | 37.5 | 14.3 | 4 |
2 | 51.0 | 15.7 | 6 |
3 | 64.5 | 14.5 | 7 |
4 | 78.0 | 15.4 | 9 |
5 | 91.5 | 14.6 | 10 |
6 | 105.0 | 15.3 | 12 |
Table 1 Structural parameter of the spiral wound heat exchanger
层数 | N | ||
---|---|---|---|
1 | 37.5 | 14.3 | 4 |
2 | 51.0 | 15.7 | 6 |
3 | 64.5 | 14.5 | 7 |
4 | 78.0 | 15.4 | 9 |
5 | 91.5 | 14.6 | 10 |
6 | 105.0 | 15.3 | 12 |
参数 | 仪器 | 不确定度 |
---|---|---|
测量参数 | ||
缠绕管长l | 米尺 | ± 0.5 mm |
缠绕管外径 | 游标卡尺 | ±0.02 mm |
所有温度 | 温度传感器 | ± 0.01℃ |
空气流量 | 蒸汽流量计 | ±0.01 m3·h-1 |
水滴流量 | 电磁流量计 | ±0.01 m3·h-1 |
计算参数 | ||
换热量 | 0.00135% | |
有效传热面积 | 0.25% | |
对数平均温差 | 0.00223% | |
总传热系数 | 0.25% |
Table 2 Uncertainties of parameters
参数 | 仪器 | 不确定度 |
---|---|---|
测量参数 | ||
缠绕管长l | 米尺 | ± 0.5 mm |
缠绕管外径 | 游标卡尺 | ±0.02 mm |
所有温度 | 温度传感器 | ± 0.01℃ |
空气流量 | 蒸汽流量计 | ±0.01 m3·h-1 |
水滴流量 | 电磁流量计 | ±0.01 m3·h-1 |
计算参数 | ||
换热量 | 0.00135% | |
有效传热面积 | 0.25% | |
对数平均温差 | 0.00223% | |
总传热系数 | 0.25% |
1 | Weikl M C, Braun K, Weiss J. Coil-wound heat exchangers for molten salt applications[J]. Energy Procedia, 2014, 49: 1054-1060. |
2 | Dehghan B B. Experimental and computational investigation of the spiral ground heat exchangers for ground source heat pump applications[J]. Applied Thermal Engineering, 2017, 121: 908-921. |
3 | Ren Y, Cai W H, Chen J, et al. The heat transfer characteristic of shell-side film flow in spiral wound heat exchanger under rolling working conditions[J]. Applied Thermal Engineering, 2018, 132: 233-244. |
4 | Wu J X, Liu S L, Wang M Q. Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change[J]. Applied Thermal Engineering, 2018, 134: 360-368. |
5 | Wu J X, Tian Q H, Sun X Z, et al. Numerical simulation and experimental research on the comprehensive performance of the shell side of the spiral wound heat exchanger[J]. Applied Thermal Engineering, 2019, 163: 114381. |
6 | Niu X J, Luo S S, Fan L L, et al. Numerical simulation on the flow and heat transfer characteristics in the one-side heating helically coiled tubes[J]. Applied Thermal Engineering, 2016, 106: 579-587. |
7 | Neeraas B O, Fredheim A O, Aunan B. Experimental shell-side heat transfer and pressure drop in gas flow for spiral-wound LNG heat exchanger[J]. International Journal of Heat and Mass Transfer, 2004, 47(2): 353-361. |
8 | Neeraas B O, Fredheim A O, Aunan B. Experimental data and model for heat transfer, in liquid falling film flow on shell-side, for spiral-wound LNG heat exchanger[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/15/16): 3565-3572. |
9 | Moawed M. Experimental study of forced convection from helical coiled tubes with different parameters[J]. Energy Conversion and Management, 2011, 52(2): 1150-1156. |
10 | Genić S B, Jaćimović B M, Jarić M S, et al. Research on the shell-side thermal performances of heat exchangers with helical tube coils[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4295-4300. |
11 | Hwang K W, Kim D E, Yang K H, et al. Experimental study of flow boiling heat transfer and dryout characteristics at low mass flux in helically-coiled tubes[J]. Nuclear Engineering and Design, 2014, 273: 529-541. |
12 | Xu X X, Zhang Y D, Liu C, et al. Experimental investigation of heat transfer of supercritical CO2 cooled in helically coiled tubes based on exergy analysis[J]. International Journal of Refrigeration, 2018, 89: 177-185. |
13 | Wu J X, Wang L, Liu Y H. Research on film condensation heat transfer of the shell side of the spiral coil heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1349-1355. |
14 | Hu H T, Ding C, Ding G L, et al. Heat transfer characteristics of two-phase mixed hydrocarbon refrigerants flow boiling in shell side of LNG spiral wound heat exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 131: 611-622. |
15 | Vashisth S, Nigam K D P. Prediction of flow profiles and interfacial phenomena for two-phase flow in coiled tubes[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 452-463. |
16 | Luo L C, Zhang G M, Pan J H, et al. Flow and heat transfer characteristics of falling water film on horizontal circular and non-circular cylinders[J]. Journal of Hydrodynamics, Ser. B, 2013, 25(3): 404-414. |
17 | 李剑锐,陈杰,浦晖,等. 绕管式换热器壳侧降膜流动和相变传热的数值模拟[J]. 化工学报, 2015, 66(S2): 40-49. |
Li J R, Chen J, Pu H, et al. Simulation of falling film flow and heat transfer at shell-side of coil-wound heat exchanger[J]. CIESC Journal, 2015, 66(S2): 40-49. | |
18 | Wu Z Y, Wang H, Cai W H, et al. Numerical investigation of boiling heat transfer on the shell-side of spiral wound heat exchanger[J]. Heat and Mass Transfer, 2016, 52(9): 1973-1982. |
19 | Ren Y, Jiang Y Q, Cai W H, et al. Numerical study on shell-side saturated boiling heat transfer in spiral wound heat exchanger[J]. Applied Thermal Engineering, 2018, 140: 657-670. |
20 | Wang S M, Jian G P, Xiao J A, et al. Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger[J]. International Communications in Heat and Mass Transfer, 2018, 95: 42-52. |
21 | Wang S M, Jian G P, Wang J R, et al. Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 116: 743-750. |
22 | Zeng M, Zhang G P, Li Y, et al. Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger[J]. Heat Transfer Engineering, 2015, 36(9): 790-805. |
23 | Lu X, Zhang G P, Chen Y T, et al. Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers[J]. Applied Thermal Engineering, 2015, 89: 1104-1116. |
24 | Wang G H, Wang D B, Peng X, et al. Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger[J]. Applied Thermal Engineering, 2019, 149: 772-787. |
25 | 吴增发, 徐宏, 徐鹏. 缠绕管式换热器壳程参数的流动换热数值研究[J]. 化学工程, 2019, 47(9): 12-17. |
Wu Z F, Xu H, Xu P. Numerical studies on geometric parametric analysis of helical-wound tube heat exchangers[J]. Chemical Engineering (China), 2019, 47(9): 12-17. | |
26 | 徐启, 刘家森, 李书金, 等. 缠绕管式换热器流体流动换热性能分析[J]. 能源研究与管理, 2022, 14(4): 122-128. |
Xu Q, Liu J S, Li S J, et al. Analysis of fluid flow heat transfer performance of wound tube heat exchangers[J]. Energy Research and Management, 2022, 14(4): 122-128. | |
27 | Yang Z, Peng X F, Ye P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1003-1016. |
28 | Kharat R, Bhardwaj N, Jha R S. Development of heat transfer coefficient correlation for concentric helical coil heat exchanger[J]. International Journal of Thermal Sciences, 2009, 48(12): 2300-2308. |
29 | Lee W H. A pressure iteration scheme for two-phase flow modeling[M]//Multiphase Transport Fundamentals, Reactor Safety, Applications. Washington D C, USA: Hemisphere Publishing, 1980: 407-431. |
30 | Xie L Y, Xie Y Q, Yu J Z. Phase distributions of boiling flow in helical coils in high gravity[J]. International Journal of Heat and Mass Transfer, 2015, 80: 7-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||