CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4535-4547.DOI: 10.11949/0438-1157.20230910
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lei WANG(), Xiongjin CAO, Kai LUO, Yan WANG(
), Hua FEI
Received:
2023-09-01
Revised:
2023-10-20
Online:
2024-01-22
Published:
2023-11-25
Contact:
Yan WANG
通讯作者:
王艳
作者简介:
王磊(1983—),男,博士,讲师,78348594@qq.com
基金资助:
CLC Number:
Lei WANG, Xiongjin CAO, Kai LUO, Yan WANG, Hua FEI. Heat transfer characteristics of supercritical CO2 in mini-type heating tube with the different flow directions[J]. CIESC Journal, 2023, 74(11): 4535-4547.
王磊, 曹雄金, 罗凯, 王艳, 费华. 不同流动方向上微型加热管内超临界CO2的换热特性[J]. 化工学报, 2023, 74(11): 4535-4547.
流动方向 | P | Tw | m | q | if,z | h |
---|---|---|---|---|---|---|
水平 | 0.5% | 0.4%~0.8% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~8.2% |
垂直向上 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~7.9% |
垂直向下 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.3% | 7.0%~8.4% |
Table 1 Uncertainties analysis of experimental parameters
流动方向 | P | Tw | m | q | if,z | h |
---|---|---|---|---|---|---|
水平 | 0.5% | 0.4%~0.8% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~8.2% |
垂直向上 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.4% | 7.0%~7.9% |
垂直向下 | 0.5% | 0.4%~0.7% | 1.7%~2.8% | 6.9%~7.2% | 0.1%~3.3% | 7.0%~8.4% |
Fig.3 The comparisons between the experimental results of measure temperature and theoretical values of measure temperatures in different flow directions
Fig.12 The relative percentage of local convective heat transfer coefficient under different inlet temperature and different flow direction conditions
文献 | Nusselt关联式 | 实验条件 |
---|---|---|
[ | 压力:74~120 bar 管径:0.7~2.16 mm 水平流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向上流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向下流动方向 | |
[ | 压力:74.6~102.6 bar 管径:4.5 mm 垂直流动方向 |
Table 2 Heat transfer correlations for supercritical carbon dioxide under different experimental conditions
文献 | Nusselt关联式 | 实验条件 |
---|---|---|
[ | 压力:74~120 bar 管径:0.7~2.16 mm 水平流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向上流动方向 | |
[ | 压力:74~120 bar 管径:0.7~2.16 mm 垂直向下流动方向 | |
[ | 压力:74.6~102.6 bar 管径:4.5 mm 垂直流动方向 |
1 | Cabeza L F, De Gracia A, Fernández A I, et al. Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
2 | Rao N T, Oumer A N, Jamaludin U K. State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels[J]. The Journal of Supercritical Fluids, 2016, 116: 132-147. |
3 | Xie G N, Xu X X, Lei X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2022, 35(1): 290-306. |
4 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
5 | Huang D, Wu Z, Sunden B, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505. |
6 | Yang Z, Cheng X, Zheng X H, et al. Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature[J]. International Journal of Heat and Mass Transfer, 2019, 128: 875-884. |
7 | Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
8 | Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. |
9 | Dang C B, Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide (Part 1): Experimental measurement[J]. International Journal of Refrigeration, 2004, 27(7): 736-747. |
10 | Dang C B, Iino K, Fukuoka K, et al. Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide[J]. International Journal of Refrigeration, 2007, 30(4): 724-731. |
11 | Huai X L, Koyama S, Zhao T S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions[J]. Chemical Engineering Science, 2005, 60(12): 3337-3345. |
12 | Oh H K, Son C H. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1230-1241. |
13 | Pitla S, Groll E, Ramadhyani S. Convective heat transfer from in-tube cooling of turbulent supercritical carbon dioxide (Part 2): Experimental data and numerical predictions[J]. HVAC&R Research, 2001, 7(4): 367-382. |
14 | Pitla S S, Groll E A, Ramadhyani S. New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2 [J]. International Journal of Refrigeration, 2002, 25(7): 887-895. |
15 | Son C H, Park S J. An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube[J]. International Journal of Refrigeration, 2006, 29(4): 539-546. |
16 | Yoon S H, Kim J H, Hwang Y W, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. International Journal of Refrigeration, 2003, 26(8): 857-864. |
17 | Liu Z B, He Y L, Yang Y F, et al. Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube[J]. Applied Thermal Engineering, 2014, 70(1): 307-315. |
18 | Adebiyi G A, Hall W B. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J]. International Journal of Heat and Mass Transfer, 1976, 19(7): 715-720. |
19 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
20 | Jiang P X, Zhao C R, Shi R F, et al. Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4748-4756. |
21 | Jiang P X, Shi R F, Xu Y J, et al. Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube[J]. The Journal of Supercritical Fluids, 2006, 38(3): 339-346. |
22 | Jiang P X, Zhang Y, Xu Y J, et al. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. International Journal of Thermal Sciences, 2008, 47(8): 998-1011. |
23 | Jiang P X, Shi R F, Zhao C R, et al. Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 6283-6293. |
24 | Li Z H, Jiang P X, Zhao C R, et al. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1162-1171. |
25 | Zhang Q, Li H X, Kong X F, et al. Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux[J]. International Journal of Heat and Mass Transfer, 2018, 122: 469-482. |
26 | Zhang S J, Xu X X, Liu C, et al. Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube[J]. Applied Thermal Engineering, 2019, 157: 113687. |
27 | Bruch A, Bontemps A, Colasson S. Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2589-2598. |
28 | Bae Y Y, Kim H Y, Kang D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1295-1308. |
29 | Bae Y Y, Kim H Y. Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 329-339. |
30 | Song J H, Kim H Y, Kim H, et al. Heat transfer characteristics of a supercritical fluid flow in a vertical pipe[J]. The Journal of Supercritical Fluids, 2008, 44(2): 164-171. |
31 | Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. |
32 | Kim D E, Kim M H. Two layer heat transfer model for supercritical fluid flow in a vertical tube[J]. The Journal of Supercritical Fluids, 2011, 58(1): 15-25. |
33 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
34 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
35 | Jiang P X, Zhang Y, Shi R F. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056. |
36 | Wang L, Pan Y C, Der Lee J, et al. Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120136. |
37 | Wang L, Pan Y C, Der Lee J, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. |
38 | Xie J Z, Liu D C, Yan H B, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. |
[1] | Wanting XU, Bo XU, Xin WANG, Zhenqian CHEN. Heat transfer characteristics of supercritical CO2 in square microchannels [J]. CIESC Journal, 2022, 73(4): 1534-1545. |
[2] | Mingze SUN, Ning MA, Haoran LI, Haifeng JIANG, Wenpeng HONG, Xiaojuan NIU. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium [J]. CIESC Journal, 2022, 73(3): 1379-1388. |
[3] | Guoyue QIAO, Jutao LIU, Jianfei SUN, Qinqin XU, Jianzhong YIN. Study on crystallization kinetics of supported nanoparticles controlled by desorption of supercritical carbon dioxide [J]. CIESC Journal, 2021, 72(11): 5849-5857. |
[4] | Zhanbin LIU, Yaling HE, Kun WANG, Zhao MA, Tao JIANG. Research on effects of foam filling types on heat transfer of supercritical CO2 flow in tube [J]. CIESC Journal, 2019, 70(9): 3329-3336. |
[5] | Jianguo YAN, Fengling ZHU, Pengcheng GUO, Xingqi LUO. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions [J]. CIESC Journal, 2019, 70(5): 1779-1787. |
[6] | CHEN Zidan, LUO Huilong, LIU Jinchun, CAO Zhenguo, ZHAO Xinshuai, YANG Wubiao. Analysis of heating performance of CO2 air-source heat pump in cold region [J]. CIESC Journal, 2018, 69(9): 4030-4036. |
[7] | LI Xidu, XIE Xinling, ZHANG Youquan, JU Quanliang. Cyclohexane assisting preparation of starch esterification in supercritical CO2 [J]. CIESC Journal, 2017, 68(6): 2526-2534. |
[8] | LIU Xinxin, YE Jian, XU Xiaoxiao, LIU Chao, WANG Kaizheng, LI Hongrui, BAI Wanjin. Heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube [J]. CIESC Journal, 2016, 67(S2): 120-127. |
[9] | BAI Wanjin, XU Xiaoxiao, WU Yangyang. Heat transfer characteristics of supercritical CO2 at low mass flux in tube [J]. CIESC Journal, 2016, 67(4): 1244-1250. |
[10] | YAN Junjie, ZHU Yinhai, LU Zelong, JIANG Peixue. Transient response of supercritical pressure hydrocarbon fuels during heating condition [J]. , 2015, 66(S1): 65-70. |
[11] | DAI Baomin, LI Minxia, LÜ Jiatong, WANG Pai, MA Yitai. Heat transfer characteristics of supercritical CO2/R41 flowing in mini-channel [J]. CIESC Journal, 2015, 66(3): 924-931. |
[12] | WEI Wei, CHEN Qun, REN Jianxun. Temperature difference driven self-feedback convective heat transfer system and its performance [J]. CIESC Journal, 2013, 64(6): 1934-1938. |
[13] | ZHAO Ling, LIU Tao. Supercritical CO2 assisted polymer processing [J]. CIESC Journal, 2013, 64(2): 436-442. |
[14] | WANG Shuxiang, ZHANG Wei, NIU Zhiyuan, XU Jinliang. Mixed convective heat transfer to supercritical carbon dioxide in helically coiled tube [J]. , 2013, 64(11): 3917-3926. |
[15] | ZHANG Faxing1,2, WEI Xiaoli2, XIAO Zhongliang1, CHENG Dejun2,YAN Chenglei3. Preparation of SiO2/PU superhydrophobic coating using rapid expansion of supercritical CO2 [J]. CIESC Journal, 2012, 63(7): 2290-2297. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||