CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1534-1545.DOI: 10.11949/0438-1157.20211466
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wanting XU(),Bo XU,Xin WANG,Zhenqian CHEN()
Received:
2021-10-13
Revised:
2022-03-01
Online:
2022-04-25
Published:
2022-04-05
Contact:
Zhenqian CHEN
通讯作者:
陈振乾
作者简介:
许婉婷(1996—),女,硕士研究生,基金资助:
CLC Number:
Wanting XU, Bo XU, Xin WANG, Zhenqian CHEN. Heat transfer characteristics of supercritical CO2 in square microchannels[J]. CIESC Journal, 2022, 73(4): 1534-1545.
许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
Add to citation manager EndNote|Ris|BibTeX
入口温度Tin/K | 热通量q / (kW/m2) | 质量流量G / (kg/(m2·s)) | 倾斜角度α /(°) |
---|---|---|---|
303.15 | 40,60,80 | 400 | 0 |
303.15 | 60 | 300,400,500 | 0 |
303.15 | 60 | 400 | 0,30,60,90,-30,-60,-90 |
Table 1 Boundary conditions under different simulated conditions
入口温度Tin/K | 热通量q / (kW/m2) | 质量流量G / (kg/(m2·s)) | 倾斜角度α /(°) |
---|---|---|---|
303.15 | 40,60,80 | 400 | 0 |
303.15 | 60 | 300,400,500 | 0 |
303.15 | 60 | 400 | 0,30,60,90,-30,-60,-90 |
序号 | 网格数量 (径向)×横向 | 网格总数/万个 | 流体温度最大 相对误差/% | 平均传热系数最大相对误差/% |
---|---|---|---|---|
Grid1 | (48×48)×500 | 115.2 | 0.10 | 3.69 |
Grid2 | (48×48)×1000 | 230.4 | 0.03 | 3.11 |
Grid3 | (48×48)×2000 | 460.8 | 0.01 | 2.29 |
Grid4 | (54×54)×500 | 145.8 | 0.09 | 1.98 |
Grid5 | (54×54)×1000 | 291.6 | 0.02 | 0.86 |
Grid6 | (54×54)×2000 | 583.2 | — | — |
Table 2 Deviations of bulk temperature and average heat transfer coefficient under different grid sizes
序号 | 网格数量 (径向)×横向 | 网格总数/万个 | 流体温度最大 相对误差/% | 平均传热系数最大相对误差/% |
---|---|---|---|---|
Grid1 | (48×48)×500 | 115.2 | 0.10 | 3.69 |
Grid2 | (48×48)×1000 | 230.4 | 0.03 | 3.11 |
Grid3 | (48×48)×2000 | 460.8 | 0.01 | 2.29 |
Grid4 | (54×54)×500 | 145.8 | 0.09 | 1.98 |
Grid5 | (54×54)×1000 | 291.6 | 0.02 | 0.86 |
Grid6 | (54×54)×2000 | 583.2 | — | — |
1 | Wu P, Ma Y D, Gao C T, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. |
2 | Jiang P X, Zhang F Z, Xu R N. Thermodynamic analysis of a solar-enhanced geothermal hybrid power plant using CO2 as working fluid[J]. Applied Thermal Engineering, 2017, 116: 463-472. |
3 | Ma Y T, Liu Z Y, Tian H. A review of transcritical carbon dioxide heat pump and refrigeration cycles[J]. Energy, 2013, 55: 156-172. |
4 | Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. |
5 | Gkountas A A, Stamatelos A M, Kalfas A I. Recuperators investigation for high temperature supercritical carbon dioxide power generation cycles[J]. Applied Thermal Engineering, 2017, 125: 1094-1102. |
6 | Zhao P H, Wan T, Jin Y X, et al. Direct numerical simulation analysis of heat transfer deterioration of supercritical fluids in a vertical tube at a high ratio of heat flux to mass flowrate[J]. Physics of Fluids, 2021, 33(5): 055114. |
7 | Zhu B G, Zhu X J, Xie J, et al. Heat transfer prediction of supercritical carbon dioxide in vertical tube based on artificial neural networks[J]. Journal of Thermal Science, 2021, 30(5): 1751-1767. |
8 | Zhang S J, Xu X X, Liu C, et al. Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube[J]. Applied Thermal Engineering, 2019, 157: 113687. |
9 | Yan C S, Xu J L, Zhu B G, et al. Numerical analysis on heat transfer characteristics of supercritical CO2 in heated vertical up-flow tube[J]. Materials (Basel, Switzerland), 2020, 13(3): 723. |
10 | Liao S M, Zhao T S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124(3): 413-420. |
11 | Kim T H, Kwon J G, Kim M H, et al. Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube[J]. Experimental Thermal and Fluid Science, 2018, 92: 222-230. |
12 | Wang J Y, Guan Z Q, Gurgenci H, et al. Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube[J]. Energy Conversion and Management, 2018, 157: 536-548. |
13 | Kumar N, Basu D N. Computational appraisal of the thermalhydraulic characteristics of supercritical carbon dioxide in heated mini-channel for HVAC applications[J]. IOP Conference Series: Earth and Environmental Science, 2020, 463(1): 012048. |
14 | Xiang M R, Guo J F, Huai X L, et al. Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition[J]. The Journal of Supercritical Fluids, 2017, 130: 389-398. |
15 | 杨传勇, 徐进良, 王晓东, 等. 超临界参数CO2在倾斜管内对流换热数值模拟[J]. 热力发电, 2013, 42(1): 26-35. |
Yang C Y, Xu J L, Wang X D, et al. Numerical simulation of convective heat transfer for supercritical CO2 in inclined tubes[J]. Thermal Power Generation, 2013, 42(1): 26-35. | |
16 | 闫晨帅, 朱兵国, 尹少军, 等. 倾斜圆管内超临界压力CO2流动换热数值分析[J]. 中国科学: 技术科学, 2020, 50(5): 571-581. |
Yan C S, Zhu B G, Yin S J, et al. Numerical analysis on flow and heat transfer characteristics of supercritical pressure CO2 in inclined tube[J]. Scientia Sinica (Technologica), 2020, 50(5): 571-581. | |
17 | Zhang L N, Liu M S, Dong Q W, et al. Numerical research of heat transfer of supercritical COR2R in channels[J]. Energy and Power Engineering, 2011, 3(2): 167-173. |
18 | Guo J F, Huai X L. Coordination analysis of cross-flow heat exchanger under high variations in thermodynamic properties[J]. International Journal of Heat and Mass Transfer, 2017, 113: 935-942. |
19 | Li H Z, Zhang Y F, Zhang L X, et al. PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle[J]. International Journal of Heat and Mass Transfer, 2016, 98: 204-218. |
20 | Zhang Y D, Peng M J, Xia G L, et al. Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube[J]. Applied Thermal Engineering, 2019, 154: 380-392. |
21 | Wen Z X, Lv Y G, Li Q, et al. Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118922. |
22 | Li Y, Sun F, Xie G N, et al. Numerical investigation on flow and thermal performance of supercritical CO2 in horizontal cylindrically concaved tubes[J]. Applied Thermal Engineering, 2019, 153: 655-668. |
23 | Zhang S J, Xu X X, Liu C, et al. The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2018, 125: 274-289. |
24 | Chen W, Yang Z N, Yang L, et al. Numerical investigation of heat transfer and flow characteristics of supercritical CO2 in U-duct[J]. Applied Thermal Engineering, 2018, 144: 532-539. |
25 | Kim J K, Jeon H K, Lee J S. Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4908-4911. |
26 | Hasan M I, Rageb A A, Yaghoubi M, et al. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger[J]. International Journal of Thermal Sciences, 2009, 48(8): 1607-1618. |
27 | Besarati S M, Yogi Goswami D, Stefanakos E K. Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles[J]. Journal of Solar Energy Engineering, 2015, 137(3): 031018. |
28 | Zhang H Y, Guo J F, Huai X L, et al. Thermodynamic performance analysis of supercritical pressure CO2 in tubes[J]. International Journal of Thermal Sciences, 2019, 146: 106102. |
29 | Lei Y C, Chen Z Q. Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels[J]. International Journal of Refrigeration, 2018, 90: 46-57. |
30 | Khalesi J, Sarunac N. Numerical analysis of flow and conjugate heat transfer for supercritical CO2 and liquid sodium in square microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1187-1199. |
31 | Yang Z N, Chen W, Chyu M K. Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes[J]. Applied Thermal Engineering, 2018, 145: 705-715. |
32 | Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
33 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
34 | Wang L, Pan Y C, Lee J D, et al. Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120136. |
35 | Yang C Y, Xu J L, Wang X D, et al. Mixed convective flow and heat transfer of supercritical CO2 in circular tubes at various inclination angles[J]. International Journal of Heat and Mass Transfer, 2013, 64: 212-223. |
36 | Wang X C, Xiang M J, Huo H J, et al. Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied Thermal Engineering, 2018, 141: 775-787. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||