CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1779-1787.DOI: 10.11949/j.issn.0438-1157.20181440
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jianguo YAN(),Fengling ZHU,Pengcheng GUO(),Xingqi LUO
Received:
2018-12-05
Revised:
2019-02-22
Online:
2019-05-05
Published:
2019-05-05
Contact:
Pengcheng GUO
通讯作者:
郭鹏程
作者简介:
<named-content content-type="corresp-name">颜建国</named-content>(1987—),男,博士,讲师,<email>jgyan@ xaut.edu.cn</email>|郭鹏程(1975—),男,博士,教授,<email>guoyicheng@xaut.edu.cn</email>
基金资助:
CLC Number:
Jianguo YAN, Fengling ZHU, Pengcheng GUO, Xingqi LUO. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787.
颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181440
参数 | 不确定度/% |
---|---|
压力/ MPa | 0.2 |
质量流速/(kg/(m2?s)) | 0.8 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
热通量/( kW/m2) | 4.6 |
传热系数/(W/(m2?K)) | 6.6 |
Table 1 Uncertainties of experimental parameters
参数 | 不确定度/% |
---|---|
压力/ MPa | 0.2 |
质量流速/(kg/(m2?s)) | 0.8 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
热通量/( kW/m2) | 4.6 |
传热系数/(W/(m2?K)) | 6.6 |
序号 | p/MPa | G/(kg/(m2?s)) |
---|---|---|
1 | 7.6 | 400 |
2 | 8.0 | 400 |
3 | 8.4 | 400 |
4 | 8.4 | 450 |
5 | 8.4 | 500 |
Table 2 Test conditions
序号 | p/MPa | G/(kg/(m2?s)) |
---|---|---|
1 | 7.6 | 400 |
2 | 8.0 | 400 |
3 | 8.4 | 400 |
4 | 8.4 | 450 |
5 | 8.4 | 500 |
名称 | 关联式 |
---|---|
Dittus-Boelter | |
Gnielinski | |
Liao-Zhao[ | |
Jackson[ | |
Pitla et al.[ | |
Li et al.[ | |
Krasnoshchekov et al.[ | |
Table 3 Heat transfer empirical correlation
名称 | 关联式 |
---|---|
Dittus-Boelter | |
Gnielinski | |
Liao-Zhao[ | |
Jackson[ | |
Pitla et al.[ | |
Li et al.[ | |
Krasnoshchekov et al.[ | |
1 | 赵新宝, 鲁金涛, 袁勇, 等 . 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报, 2016, 36(1): 154-162. |
Zhao X B , Lu J T , Yuan Y , et al . Analysis of supercritical carbon dioxide Brayton cycle and candidate materials of key hot components for power plants [J]. Proceedings of the CSEE, 2016, 36(1): 154-162. | |
2 | Ahn Y , Bae S J , Kim M , et al . Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
3 | Cabeza L F , de Gracia A , Fernández A I , et al . Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
4 | Rao N T , Oumer A N , Jamaludin U K . State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels[J]. The Journal of Supercritical Fluids, 2016, 116: 132-147. |
5 | Liao S M , Zhao T S . Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124(3): 413-420. |
6 | Duffey R B , Pioro I L . Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
7 | 石润富, 姜培学, 张宇 . 细圆管内超临界二氧化碳对流换热的实验研究[J]. 工程热物理学报, 2007, 28(6): 995-997. |
Shi R F , Jiang P X , Zhang Y . Experimental study on convection heat transfer of supercritical carbon dioxide in a thin tube [J]. Journal of Engineering Thermophysics, 2007, 28(6): 995-997. | |
8 | Jiang P X , Liu B , Zhao C R , et al . Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 741-749. |
9 | Jiang P X , Zhang Y , Shi R F . Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056. |
10 | 张宇, 姜培学, 石润富, 等 . 竖直圆管中超临界压力CO2在低Re数下对流换热研究[J]. 工程热物理学报, 2008, 29(1): 118-120. |
Zhang Y , Jiang P X , Shi R F , et al . Study on convection heat transfer of supercritical pressure CO2 in vertical circular tube at low Re number [J]. Journal of Engineering Thermophysics, 2008, 29(1): 118-120. | |
11 | 杨传勇, 徐进良, 王晓东, 等 . 超临界二氧化碳水平管内层流混合对流换热数值模拟[J]. 低温工程, 2012, (4): 24-29. |
Yang C Y , Xu J L , Wang X D , et al . Numerical simulation of laminar convective heat transfer in a supercritical carbon dioxide horizontal pipe[J]. Cryogenic Engineering, 2012, (4): 24-29. | |
12 | 刘生晖, 黄彦平, 刘光旭, 等 . 管内超临界二氧化碳强迫对流传热浮升力效应数值研究[J]. 核动力工程, 2016, 37(6): 18-22. |
Liu S H , Huang Y P , Liu G X , et al . Numerical study on the effect of supercritical carbon dioxide forcing on the spread of heat floating lift effect [J]. Nuclear Power Engineering, 2016,37(6): 18-22. | |
13 | 黄彦平, 刘生晖, 刘光旭, 等 . 典型超临界二氧化碳强迫对流传热关联式评价分析[J]. 核动力工程, 2016, (1): 28-33. |
Huang Y P , Liu S H , Liu G X , et al . Evaluation and analysis of forced convection heat transfer correlations for supercritical carbon dioxide in tubes[J]. Nuclear Power Engineering, 2016, (1): 28-33. | |
14 | 相梦如, 郭江峰, 淮秀兰, 等 . 超临界压力CO2水平管内冷却换热机理研究[J]. 工程热物理学报, 2017, 38(9): 1929-1934. |
Xiang M R , Guo J F , Huai X L , et al . Study on the cooling and heat transfer mechanism of CO2 in horizontal tube at supercritical pressure [J]. Journal of Engineering Thermophysics, 2017,38(9): 1929-1934. | |
15 | 白万金, 徐肖肖, 吴杨杨 . 低质量流速下超临界CO2在管内冷却换热特性[J]. 化工学报, 2016, 67(4): 1244-1250. |
Bai W J , Xu X X , Wu Y Y . Heat transfer characteristics of supercritical CO2 at low mass flux in tube [J]. CIESC Journal, 2016, 67(4): 1244-1250. | |
16 | Lei Y , Chen Z . Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels[J]. International Journal of Refrigeration, 2018, 90: 46-57. |
17 | Xu X , Zhang Y , Liu C , et al . Experimental investigation of heat transfer of supercritical CO2 cooled in helically coiled tubes based on exergy analysis[J]. International Journal of Refrigeration, 2018, 89: 177-185. |
18 | 刘新新, 叶建, 徐肖肖, 等 . 超临界CO2在水平螺旋管内的冷却换热特性[J]. 化工学报, 2016, 67(S2): 120-127. |
Liu X X , Ye J , Xu X X , et al . Heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube [J]. CIESC Journal, 2016, 67(S2): 120-127. | |
19 | Yang Z , Chen W , Chyu M K . Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes[J]. Applied Thermal Engineering, 2018, 145: 705-715. |
20 | Coleman H W , Steele W G . Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 1888-1896. |
21 | Thom J S , Walker W M , Fallon T A , et al . Boiling in subcooled water during flow up heated tubes or annuli[J]. Proceedings of the Institution of Mechanical Engineers, 1966, 180: 226-246. |
22 | Yamagata K , Nishikawa K , Hasegawa S , et al . Forced convective heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2575-2593. |
23 | Kim J K , Hong K J , Lee J S . Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design, 2007, 237(15): 1795-1802. |
24 | Jackson J D . Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
25 | McEligot D M , Coon C W , Perkins H C . Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433. |
26 | Liao S M , Zhao T S . An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
27 | Jackson J D . Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264(11): 24-40. |
28 | Pitla S S , Groll E A , Ramadhyani S . New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2 [J]. International Journal of Refrigeration, 2002, 25(7): 887-895. |
29 | Li H , Kruizenga A , Anderson M , et al . Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. |
30 | Krasnoshchekov E , Kuraeva I , Protopopov V . Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions[J]. Teplofizika Vysokikh Temperatur, 1970, 7(5): 922-930. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[5] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[6] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[9] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[10] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[11] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[12] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[13] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[14] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[15] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||