CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 1028-1039.DOI: 10.11949/0438-1157.20231054
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Received:
2023-10-11
Revised:
2024-01-17
Online:
2024-05-11
Published:
2024-03-25
Contact:
Xuemei CHEN
通讯作者:
陈雪梅
作者简介:
张昕锐(1999—),男,硕士研究生,better_zxr@njust.edu.cn
基金资助:
CLC Number:
Xinrui ZHANG, Xuemei CHEN. CNT/PVA@carbon-cloth membrane for performance study of solar and electric-driven interfacial evaporation[J]. CIESC Journal, 2024, 75(3): 1028-1039.
张昕锐, 陈雪梅. CNT/PVA@碳布膜的光电联合驱动界面蒸发性能研究[J]. 化工学报, 2024, 75(3): 1028-1039.
Fig.8 Evaporation performance of CNT/PVA@CC membranes under solely solar energy, and solely electrical energy, as well as solar coupled electrical energy
1 | Kåresdotter E, Destouni G, Ghajarnia N, et al. Distinguishing direct human-driven effects on the global terrestrial water cycle[J]. Earth’s Future, 2022, 10(8): e2022EF002848. |
2 | Alvarez P J J, Chan C K, Elimelech M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13: 634-641. |
3 | Wang J L, Kong Y, Liu Z, et al. Solar-driven interfacial evaporation: design and application progress of structural evaporators and functional distillers[J]. Nano Energy, 2023, 108: 108115. |
4 | Chen C J, Kuang Y D, Hu L B. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3): 683-718. |
5 | Li Z T, Xu X T, Sheng X R, et al. Solar-powered sustainable water production: state-of-the-art technologies for sunlight-energy-water nexus[J]. ACS Nano, 2021, 15(8): 12535-12566. |
6 | Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3: 1031-1041. |
7 | Wang Z, Horseman T, Straub A P, et al. Pathways and challenges for efficient solar-thermal desalination[J]. Science Advances, 2019, 5(7): eaax0763. |
8 | Zhang L N, Xu Z Y, Bhatia B, et al. Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills[J]. Applied Energy, 2020, 266: 114864. |
9 | Zhao F, Guo Y H, Zhou X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5: 388-401. |
10 | Gao M M, Peh C K, Phan H T, et al. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation[J]. Advanced Energy Materials, 2018, 8(25): 1800711. |
11 | Zhu L L, Gao M M, Peh C K N, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J]. Advanced Energy Materials, 2018, 8(16): 1702149. |
12 | Cui Y Y, Liu J, Li Z Q, et al. Donor-acceptor-type organic-small-molecule-based solar-energy-absorbing material for highly efficient water evaporation and thermoelectric power generation[J]. Advanced Functional Materials, 2021, 31(49): 2106247. |
13 | Wu G Z, Bing N C, Li Y F, et al. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion[J]. Energy Conversion and Management, 2022, 256: 115361. |
14 | Zhu L L, Ding T P, Gao M M, et al. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation[J]. Advanced Energy Materials, 2019, 9(22): 1900250. |
15 | Yang P H, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9): 1923-1927. |
16 | Hu Y J, Yao H Z, Liao Q H, et al. The promising solar-powered water purification based on graphene functional architectures[J]. EcoMat, 2022, 4(5): e12205. |
17 | Li C X, Cao S J, Lutzki J, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J]. Journal of the American Chemical Society, 2022, 144(7): 3083-3090. |
18 | Li X Q, Xie W R, Zhu J. Interfacial solar steam/vapor generation for heating and cooling[J]. Advanced Science, 2022, 9(6): e2104181. |
19 | Huang J, He Y R, Hu Y W, et al. Coupled photothermal and joule-heating process for stable and efficient interfacial evaporation[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110156. |
20 | Chu Z, Liu Z, Li Z, et al. Hierarchical unidirectional fluidic solar-electro-thermal evaporator for all-day efficient water purification[J]. Materials Today Sustainability, 2022, 19: 100223. |
21 | 马佳香. 太阳能光电联合蒸发用于高效海水淡化的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Ma J X. Solar evaporator based on photo-electro-thermal for efficient seawater desalination[D].Harbin: Harbin Institute of Technology, 2019. | |
22 | Zhu M W, Li Y J, Chen F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials, 2018, 8(4): 1701028. |
23 | Chala T F, Wu C M, Chou M H, et al. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28955-28962. |
24 | Jiang Q S, Tian L M, Liu K K, et al. Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials, 2016, 28(42): 9400-9407. |
25 | Zhou X Y, Zhao F, Guo Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-1992. |
26 | Yang T, Lin H, Lin K T, et al. Carbon-based absorbers for solar evaporation: steam generation and beyond[J]. Sustainable Materials and Technologies, 2020, 25: e00182. |
27 | Wang M, Hou Y Q, Yu L J, et al. Anomalies of ionic/molecular transport in nano and sub-nano confinement[J]. Nano Letters, 2020, 20(10): 6937-6946. |
28 | Kim H, Jeon D Y, Jang S G, et al. Synergetic effect of BN for the electrical conductivity of CNT/PAN composite fiber[J]. Journal of Mechanical Science and Technology, 2022, 36(6): 3103-3107. |
29 | Tan X, Cheng Y, Wang S L. Design of interface-stable Janus solar-energy evaporator[J]. International Journal of Thermal Sciences, 2022, 179: 107712. |
30 | Liu X H, Liu Z C, Devadutta Mishra D, et al. Evaporation rate far beyond the input solar energy limit enabled by introducing convective flow[J]. Chemical Engineering Journal, 2022, 429: 132335. |
31 | Li X Q, Ni G, Cooper T, et al. Measuring conversion efficiency of solar vapor generation[J]. Joule, 2019, 3(8): 1798-1803. |
32 | Cao P, Zhao L M, Zhang J, et al. Gradient heating effect modulated by hydrophobic/hydrophilic carbon nanotube network structures for ultrafast solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19109-19116. |
33 | Lin Z X, Wu T T, Jia B X, et al. Nature-inspired poly(N-phenylglycine)/wood solar evaporation system for high-efficiency desalination and water purification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128272. |
34 | Zhang X Y, Peng Y J, Shi L Y, et al. Highly efficient solar evaporator based on a hydrophobic association hydrogel[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18114-18125. |
35 | Ma X L, Jia X D, Yao G C, et al. Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater[J]. Cell Reports Physical Science, 2022, 3(7): 100940. |
36 | Kuang Y D, Chen C J, He S M, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials, 2019, 31(23): e1900498. |
37 | Fang Q L, Li T T, Chen Z M, et al. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10672-10679. |
38 | Zhang L J, Wang X C, Xu X H, et al. A Janus solar evaporator with photocatalysis and salt resistance for water purification[J]. Separation and Purification Technology, 2022, 298: 121643. |
39 | Tariq M Z, Hanif Z, Kim B, et al. Solvent-free fabrication of photothermal polypyrrole-coated sulfur particles for solar steam generation[J]. Applied Surface Science, 2023, 612: 155815. |
40 | Li T T, Fang Q L, Wang J Q, et al. Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays[J]. Journal of Materials Chemistry A, 2021, 9(1): 390-399. |
41 | Sun Z Z, Li W Z, Song W L, et al. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration[J]. Journal of Materials Chemistry A, 2020, 8(1): 349-357. |
[1] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[2] | Ningguang CHEN, Yunhua GAN. Study on evaporation and heat transfer of charged sessile droplet based on lattice Boltzmann method [J]. CIESC Journal, 2023, 74(12): 4829-4839. |
[3] | Jiebing WANG, Jintong GAO, Zhenyuan XU. Experimental study on solar interfacial evaporation based on vapor pressure characteristics of different solutions [J]. CIESC Journal, 2022, 73(2): 663-671. |
[4] | CHEN Jianmin1,SUN Yuling2,JIANG Bin3,QIN Ya3. Analysis of structure and operating parameters of typical industrial vacuum transfer line [J]. , 2011, 30(7): 1450-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 506
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||