CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4453-4467.DOI: 10.11949/0438-1157.20240588
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lin JIANG1(), Tongwang ZHANG2, Rongzheng LIU1, Youlin SHAO1, Bing LIU1, Malin LIU1(
)
Received:
2024-05-31
Revised:
2024-08-07
Online:
2025-01-03
Published:
2024-12-25
Contact:
Malin LIU
蒋琳1(), 张同旺2, 刘荣正1, 邵友林1, 刘兵1, 刘马林1(
)
通讯作者:
刘马林
作者简介:
蒋琳(1998—),女,博士研究生,jiang-l20@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Lin JIANG, Tongwang ZHANG, Rongzheng LIU, Youlin SHAO, Bing LIU, Malin LIU. Magnetic particle tracing method for measuring fluidization behavior of high-density particles[J]. CIESC Journal, 2024, 75(12): 4453-4467.
蒋琳, 张同旺, 刘荣正, 邵友林, 刘兵, 刘马林. 高密度颗粒流化行为测量的磁性颗粒示踪方法[J]. 化工学报, 2024, 75(12): 4453-4467.
Fig.3 (a) Schematic diagram of structure of experimental three-dimensional conical spouted bed; (b) Physical drawings of particle tracing experimental device and detection system
参数 | 数值 |
---|---|
喷嘴直径D0/mm | 8 |
底面直径Di/mm | 20 |
床层直径Dc/mm | 100 |
锥角γ/(°) | 60 |
Table 1 Geometric parameters of the three-dimensional conical spouted bed used in the experiment
参数 | 数值 |
---|---|
喷嘴直径D0/mm | 8 |
底面直径Di/mm | 20 |
床层直径Dc/mm | 100 |
锥角γ/(°) | 60 |
参数 | 数值 |
---|---|
流化颗粒数 | 2000 |
磁性颗粒数 | 1 |
流化颗粒直径/mm | 3 |
磁性颗粒直径/mm | 3 |
流化颗粒密度/(g/cm3) | 7.6~7.8 |
磁性颗粒密度/(g/cm3) | 7.6 |
流化气体 | 高压氮气 |
流化入口气速/(m/s) | 0~50 |
Table 2 Operation parameters of particle tracing experiment under fluidization condition
参数 | 数值 |
---|---|
流化颗粒数 | 2000 |
磁性颗粒数 | 1 |
流化颗粒直径/mm | 3 |
磁性颗粒直径/mm | 3 |
流化颗粒密度/(g/cm3) | 7.6~7.8 |
磁性颗粒密度/(g/cm3) | 7.6 |
流化气体 | 高压氮气 |
流化入口气速/(m/s) | 0~50 |
Fig.6 (a) — (e) Original signals of magnetic field intensity corresponding to different vertical spacing d; (f) Magnetic field strength under d=20 mm after eliminating the geomagnetic signal
探测点 | 检测器坐标/cm | 磁场强度理论值/μT | 磁场强度实验值/μT | 磁场强度相对误差 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N1 | N2 | N3 | N1 | N2 | N3 | ||
1 | S1(-4.76, 2.75, 7.2) S2(-3.89, 3.89, 7.2) S3(-4.76, -2.75, 7.2) | 212.615 | 124.473 | 212.615 | 216 | 92 | 216 | 0.016 | 0.261 | 0.016 |
2 | S1(-4.76, 2.75, 3.6) S2(-3.89, 3.89, 3.6) S3(-4.76, -2.75, 3.6) | 62.674 | 62.582 | 62.674 | 24 | 26 | 24 | 0.617 | 0.585 | 0.617 |
3 | S1(4.76, 2.75, 3.6) S2(3.89, 3.89, 3.6) S3(4.76, -2.75, 3.6) | 212.615 | 124.473 | 212.615 | 252 | 105 | 252 | 0.185 | 0.156 | 0.185 |
Table 3 Spatial position measurement results of tracer particles
探测点 | 检测器坐标/cm | 磁场强度理论值/μT | 磁场强度实验值/μT | 磁场强度相对误差 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N1 | N2 | N3 | N1 | N2 | N3 | ||
1 | S1(-4.76, 2.75, 7.2) S2(-3.89, 3.89, 7.2) S3(-4.76, -2.75, 7.2) | 212.615 | 124.473 | 212.615 | 216 | 92 | 216 | 0.016 | 0.261 | 0.016 |
2 | S1(-4.76, 2.75, 3.6) S2(-3.89, 3.89, 3.6) S3(-4.76, -2.75, 3.6) | 62.674 | 62.582 | 62.674 | 24 | 26 | 24 | 0.617 | 0.585 | 0.617 |
3 | S1(4.76, 2.75, 3.6) S2(3.89, 3.89, 3.6) S3(4.76, -2.75, 3.6) | 212.615 | 124.473 | 212.615 | 252 | 105 | 252 | 0.185 | 0.156 | 0.185 |
Fig.16 (a) Schematic diagram of annulus region; (b) Physical drawing of annulus region; (c) Measurement results of particle trajectories in annulus region
1 | Nabielek H, Kühnlein W, Schenk W, et al. Development of advanced HTR fuel elements[J]. Nuclear Engineering and Design, 1990, 121(2): 199-210. |
2 | 刘荣正, 刘马林, 邵友林, 等. 流化床-化学气相沉积技术的应用及研究进展[J]. 化工进展, 2016, 35(5): 1263-1272. |
Liu R Z, Liu M L, Shao Y L, et al. Application and research progress of fluidized bed-chemical vapor deposition technology[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1263-1272. | |
3 | Liu M L, Liu B, Shao Y L, et al. Optimization design of the coating furnace by 3-d simulation of spouted bed dynamics in the coater[J]. Nuclear Engineering and Design, 2014, 271: 68-72. |
4 | Marshall D W. Spouted bed design considerations for coated nuclear fuel particles[J]. Powder Technology, 2017, 316: 421-425. |
5 | Liu M L, Shao Y L, Liu B. Pressure analysis in the fabrication process of TRISO UO2-coated fuel particle[J]. Nuclear Engineering and Design, 2012, 250: 277-283. |
6 | Fauquet-Alekhine P. Gas-particles flow transitions for high density powder[C]//Proceedings of the World Congress on Engineering. 2012. |
7 | Sari S, Kulah G, Koksal M. Characterization of gas-solid flow in conical spouted beds operating with heavy particles[J]. Experimental Thermal and Fluid Science, 2012, 40: 132-139. |
8 | Goldschmidt M J V, Link J M, Mellema S, et al. Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidised beds[J]. Powder Technology, 2003, 138(2/3): 135-159. |
9 | Xu J, Bao X J, Wei W S, et al. Statistical and frequency analysis of pressure fluctuations in spouted beds[J]. Powder Technology, 2004, 140(1/2): 141-154. |
10 | Patterson E E, Halow J, Daw S. Innovative method using magnetic particle tracking to measure solids circulation in a spouted fluidized bed[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5037-5043. |
11 | Mathur K B, Gishler P E. A technique for contacting gases with coarse solid particles[J]. AIChE Journal, 1955, 1(2): 157-164. |
12 | Solimene R, Chirone R, Salatino P. Characterization of the devolatilization rate of solid fuels in fluidized beds by time-resolved pressure measurements[J]. AIChE Journal, 2012, 58(2): 632-645. |
13 | Harris A T, Davidson J F, Thorpe R B. A novel method for measuring the residence time distribution in short time scale particulate systems[J]. Chemical Engineering Journal, 2002, 89(1/2/3): 127-142. |
14 | Luštrik M, Dreu R, Perpar M. Influence of perforated draft tube air intake on a pellet coating process[J]. Powder Technology, 2018, 330: 114-124. |
15 | Bacchuwar S, Vidyapati V, Quan K M, et al. Quantitative bin flow analysis of particle discharge using X-ray radiography[J]. Powder Technology, 2019, 344: 693-705. |
16 | Halow J S, Nicoletti P. Observations of fluidized bed coalescence using capacitance imaging[J]. Powder Technology, 1992, 69(3): 255-277. |
17 | Mehdizad M, Fullard L, Galvosas P, et al. Quantitative measurements of flow dynamics in 3D hoppers using MRI[J]. Powder Technology, 2021, 392: 69-80. |
18 | An R, Kong L W, Li C S. Pore distribution characteristics of thawed residual soils in artificial frozen-wall using NMRI and MIP measurements[J]. Applied Sciences, 2020, 10(2): 544. |
19 | Lin J S, Chen M M, Chao B T. A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds[J]. AIChE Journal, 1985, 31(3): 465-473. |
20 | Limtrakul S, Chen J W, Ramachandran P A, et al. Solids motion and holdup profiles in liquid fluidized beds[J]. Chemical Engineering Science, 2005, 60(7): 1889-1900. |
21 | Bindseil G A, Gilbert K M, Scholl T J, et al. First image from a combined positron emission tomography and field-cycled MRI system[J]. Magnetic Resonance in Medicine, 2011, 66(1): 301-305. |
22 | Richter M C, Mainza A N, Govender I, et al. Features of near gravitational material tracers in a dense medium cyclone from PEPT[J]. Powder Technology, 2023, 415: 118095. |
23 | Halow J, Holsopple K, Crawshaw B, et al. Observed mixing behavior of single particles in a bubbling fluidized bed of higher-density particles[J]. Industrial & Engineering Chemistry Research, 2012, 51(44): 14566-14576. |
24 | Buist K A, Jayaprakash P, Kuipers J A M, et al. Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed[J]. AIChE Journal, 2017, 63(12): 5335-5342. |
25 | Buist K A, van der Gaag A C, Deen N G, et al. Improved magnetic particle tracking technique in dense gas fluidized beds[J]. AIChE Journal, 2014, 60(9): 3133-3142. |
26 | Mema I, Buist K A, Kuipers J A M, et al. Fluidization of spherical versus elongated particles: experimental investigation using magnetic particle tracking[J]. AIChE Journal, 2020, 66(4): e16895. |
27 | 王立乾, 胡忠强, 关蒙萌, 等. 基于巨磁阻效应的磁场传感器研究进展[J]. 仪表技术与传感器, 2021(12): 1-12, 17. |
Wang L Q, Hu Z Q, Guan M M, et al. Research progress of magnetic field sensors based on GMR effect[J]. Instrument Technique and Sensor, 2021(12): 1-12, 17. | |
28 | 张海峰, 刘晓为, 王喜莲, 等. 磁电阻效应的原理及其应用[J]. 哈尔滨工业大学学报, 2008, 40(3): 362-366. |
Zhang H F, Liu X W, Wang X L, et al. Principles and applications of magneto-resistance effect[J]. Journal of Harbin Institute of Technology, 2008, 40(3): 362-366. | |
29 | Mohankumar P, Ajayan J, Yasodharan R, et al. A review of micromachined sensors for automotive applications[J]. Measurement, 2019, 140: 305-322. |
30 | 林乾浩, 钱正洪, 龚天平, 等. 基于GMR传感器的三轴电子罗盘[J]. 机电工程, 2013, 30(1): 55-59. |
Lin Q H, Qian Z H, Gong T P, et al. Three-axis electronic compass based on GMR sensor[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(1): 55-59. | |
31 | Song G S, Kenney M, Chen Y S, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties[J]. Nature Biomedical Engineering, 2020, 4(3): 325-334. |
32 | Kiyuna A, Kiyuna T. Current dipole estimation method for cerebral diagnosis: JP1998201729(A)[P]. 2023-08-10. |
[1] | Zhengang ZHAO, Mengyao ZHOU, Dian JIN, Dacheng ZHANG. Study on direct methanol fuel cell performance modification based on foam carbon diffusion layer [J]. CIESC Journal, 2024, 75(S1): 259-266. |
[2] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[3] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[4] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[5] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
[6] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[7] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[8] | Liang ZHAO, Yuqiao LI, De ZHANG, Shengqiang SHEN. Experimental study of internal and external field characteristics of spiral nozzle [J]. CIESC Journal, 2024, 75(8): 2777-2786. |
[9] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[10] | Yanxi LI, Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO. Study on separation characteristics and structure optimization of a volute type multi-channel gas-liquid cyclone separator [J]. CIESC Journal, 2024, 75(8): 2875-2885. |
[11] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[12] | Peiqi LI, Xuejiao CHEN, Boxiang WU, Rongpei JIANG, Chao YANG, Zhaohui LIU. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters [J]. CIESC Journal, 2024, 75(7): 2422-2432. |
[13] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[14] | Xinzi ZHOU, Zenghui LI, Xianyang MENG, Jiangtao WU. Experimental study on viscosity of high purity air at low temperatures [J]. CIESC Journal, 2024, 75(3): 782-788. |
[15] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 454
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||