CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 67-75.DOI: 10.11949/0438-1157.20240246
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lü LIU1(), Jieru LIU2, Liangliang FAN3(
), Liang ZHAO2
Received:
2024-03-01
Revised:
2024-04-12
Online:
2024-12-17
Published:
2024-12-25
Contact:
Liangliang FAN
通讯作者:
范亮亮
作者简介:
刘律(2000—),男,硕士,2836756542@qq.com
基金资助:
CLC Number:
Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect[J]. CIESC Journal, 2024, 75(S1): 67-75.
刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75.
SR | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
4 | 82.8 | 23.2 | 86.7 | 99.5 |
8 | 95.7 | 84.1 | 96.2 | 99.3 |
10 | 100 | 85.2 | 92.9 | 100 |
12 | 96.4 | 92.9 | 99.3 | 100 |
16 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 100 | 100 |
Table 1 Separation efficiency and separation purity of 7 and 15 μm particles under different flow rate ratios
SR | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
4 | 82.8 | 23.2 | 86.7 | 99.5 |
8 | 95.7 | 84.1 | 96.2 | 99.3 |
10 | 100 | 85.2 | 92.9 | 100 |
12 | 96.4 | 92.9 | 99.3 | 100 |
16 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 100 | 100 |
总流量Q/(μl/min) | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
1 | 88.9 | 91.4 | 98.9 | 99.6 |
5 | 100 | 100 | 100 | 100 |
10 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 99.8 | 100 |
Table 2 Separation efficiency and separation purity of 7 and 15 μm particles at different flow rates
总流量Q/(μl/min) | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
1 | 88.9 | 91.4 | 98.9 | 99.6 |
5 | 100 | 100 | 100 | 100 |
10 | 100 | 98.8 | 99.6 | 100 |
20 | 100 | 100 | 99.8 | 100 |
流体工质 | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
NaCl溶液 | 100 | 85.1 | 97.9 | 100 |
0.5%PVP溶液 | 100 | 100 | 100 | 100 |
2%PVP溶液 | 100 | 94.4 | 99.5 | 100 |
Table 3 Separation efficiency and separation purity of 7 and 15 μm particles in different kinds of fluids
流体工质 | 15 μm | 7 μm | ||
---|---|---|---|---|
E/% | P/% | E/% | P/% | |
NaCl溶液 | 100 | 85.1 | 97.9 | 100 |
0.5%PVP溶液 | 100 | 100 | 100 | 100 |
2%PVP溶液 | 100 | 94.4 | 99.5 | 100 |
不同颗粒粒径/μm | E/% | P/% |
---|---|---|
4 | 57 | 100 |
10 | 85.9 | 31.8 |
7 | 99.6 | 100 |
15 | 100 | 98.8 |
Table 4 Separation efficiency and separation purity of particles with different particle sizes
不同颗粒粒径/μm | E/% | P/% |
---|---|---|
4 | 57 | 100 |
10 | 85.9 | 31.8 |
7 | 99.6 | 100 |
15 | 100 | 98.8 |
1 | Lu K J, Hou F Y, Fu W L, et al. Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions[J]. Physical Chemistry Chemical Physics, 2021, 23(39): 22743-22749. |
2 | Shen S H, Zhao L, Guo L J. Zn m In2S3+m (m=1—5, integer): a new series of visible-light-driven photocatalysts for splitting water to hydrogen[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10148-10154. |
3 | Wang H L, Fu P B, Li J P, et al. Separation-and-recovery technology for organic waste liquid with a high concentration of inorganic particles[J]. Engineering, 2018, 4(3): 406-415. |
4 | Yang Q, Li Z M, Lv W J, et al. On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone[J]. Separation and Purification Technology, 2013, 110: 93-100. |
5 | Fu P B, Wang H L, Li J P, et al. Cyclonic gas stripping deoiling and gas flow acceleration classification for the resource utilization of spent catalysts in residue hydrotreating process[J]. Journal of Cleaner Production, 2018, 190: 689-702. |
6 | Lee L M, Rosano J, Wang Y, et al. Label-free mesenchymal stem cell enrichment from bone marrow samples by inertial microfluidics[J]. Analytical Methods, 2018, 10(7): 713-721. |
7 | Wylot B, Konarzewska K, Bugajski L, et al. Isolation of vascular endothelial cells from intact and injured murine brain cortex-technical issues and pitfalls in FACS analysis of the nervous tissue[J]. Cytometry. Part A, 2015, 87(10): 908-920. |
8 | Chen W C W, Péault B, Huard J. Regenerative translation of human blood-vessel-derived MSC precursors[J]. Stem Cells International, 2015, 2015: 375187. |
9 | Xue K, Zhang X D, Qi L, et al. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium[J]. American Journal of Translational Research, 2016, 8(2): 732-741. |
10 | Xu H W, Dong B, Xu S H, et al. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites[J]. Biomaterials, 2017, 138: 69-79. |
11 | Jeanbart L, Swartz M A. Engineering opportunities in cancer immunotherapy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14467-14472. |
12 | Haverty P M, Lin E, Tan J, et al. Reproducible pharmacogenomic profiling of cancer cell line panels[J]. Nature, 2016, 533(7603): 333-337. |
13 | Di Meo A, Bartlett J, Cheng Y F, et al. Liquid biopsy: a step forward towards precision medicine in urologic malignancies[J]. Molecular Cancer, 2017, 16(1): 80. |
14 | Varillas J I, Zhang J L, Chen K F, et al. Microfluidic isolation of circulating tumor cells and cancer stem-like cells from patients with pancreatic ductal adenocarcinoma[J]. Theranostics, 2019, 9(5): 1417-1425. |
15 | Kim T H, Yoon H J, Fouladdel S, et al. Characterizing circulating tumor cells isolated from metastatic breast cancer patients using graphene oxide based microfluidic assay[J]. Advanced Biosystems, 2019, 3(2): e1800278. |
16 | Kim S H, Ito H, Kozuka M, et al. Cancer marker-free enrichment and direct mutation detection in rare cancer cells by combining multi-property isolation and microfluidic concentration[J]. Lab on a Chip, 2019, 19(5): 757-766. |
17 | Bhagat A A S, Bow H, Hou H W, et al. Microfluidics for cell separation[J]. Medical & Biological Engineering & Computing, 2010, 48(10): 999-1014. |
18 | Huh D, Bahng J H, Ling Y B, et al. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification[J]. Analytical Chemistry, 2007, 79(4): 1369-1376. |
19 | Xu X F, Huang X W, Sun J J, et al. Recent progress of inertial microfluidic-based cell separation[J]. Analyst, 2021, 146(23): 7070-7086. |
20 | Kang J H, Krause S, Tobin H, et al. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells[J]. Lab on a Chip, 2012, 12(12): 2175-2181. |
21 | Huang X H, Torres-Castro K, Varhue W, et al. Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection[J]. Lab on a Chip, 2021, 21(5): 835-843. |
22 | Ding X Y, Peng Z L, Lin S C S, et al. Cell separation using tilted-angle standing surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36): 12992-12997. |
23 | Li P, Mao Z M, Peng Z L, et al. Acoustic separation of circulating tumor cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 4970-4975. |
24 | Wu M X, Ozcelik A, Rufo J, et al. Acoustofluidic separation of cells and particles[J]. Microsystems & Nanoengineering, 2019, 5: 32. |
25 | MacDonald M P, Spalding G C, Dholakia K. Microfluidic sorting in an optical lattice[J]. Nature, 2003, 426(6965): 421-424. |
26 | Liu Z B, Huang Y Q, Liang W L, et al. Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells[J]. Lab on a Chip, 2021, 21(15): 2881-2891. |
27 | Yamada M, Nakashima M, Seki M. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel[J]. Analytical Chemistry, 2004, 76(18): 5465-5471. |
28 | Lu C Y, Xu J, Han J T, et al. A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells[J]. Lab on a Chip, 2020, 20(22): 4094-4105. |
29 | Yamada M, Seko W, Yanai T, et al. Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting[J]. Lab on a Chip, 2017, 17(2): 304-314. |
30 | Gou Y X, Jia Y X, Wang P, et al. Progress of inertial microfluidics in principle and application[J]. Sensors, 2018, 18(6): 1762. |
31 | Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab on a Chip, 2009, 9(20): 2973-2980. |
32 | Nam J, Lim H, Kim D, et al. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid[J]. Lab on a Chip, 2012, 12(7): 1347-1354. |
33 | Yuan D, Zhao Q B, Yan S, et al. Recent progress of particle migration in viscoelastic fluids[J]. Lab on a Chip, 2018, 18(4): 551-567. |
34 | Li D, Lu X Y, Xuan X C. Viscoelastic separation of particles by size in straight rectangular microchannels: a parametric study for a refined understanding[J]. Analytical Chemistry, 2016, 88(24): 12303-12309. |
35 | Lu X Y, Xuan X C. Continuous microfluidic particle separation via elasto-inertial pinched flow fractionation[J]. Analytical Chemistry, 2015, 87(12): 6389-6396. |
[1] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[2] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[3] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[4] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[5] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[6] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[7] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[8] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[9] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[10] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[11] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[12] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[13] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[14] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[15] | Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers [J]. CIESC Journal, 2024, 75(3): 823-835. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||