CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3074-3082.DOI: 10.11949/0438-1157.20240141
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hao TANG1(), Dinghua HU1(
), Qiang LI1, Xuanchang ZHANG1, Junjie HAN2
Received:
2024-01-30
Revised:
2024-05-08
Online:
2024-10-10
Published:
2024-09-25
Contact:
Dinghua HU
唐昊1(), 胡定华1(
), 李强1, 张轩畅1, 韩俊杰2
通讯作者:
胡定华
作者简介:
唐昊(1999—),男,硕士研究生,tanghao@njust.edu.cn
基金资助:
CLC Number:
Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel[J]. CIESC Journal, 2024, 75(9): 3074-3082.
唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082.
参数 | 数值 |
---|---|
液相密度/(kg/m3) | 1520 |
气相密度/(kg/m3) | 9.7 |
比热容/(kJ/(kg·K)) | 1.1 |
热导率/(W/(m·K)) | 0.058 |
沸点/℃ | 61 |
潜热/(kJ/kg) | 50 |
Table 1 HFE-7100 physical parameters
参数 | 数值 |
---|---|
液相密度/(kg/m3) | 1520 |
气相密度/(kg/m3) | 9.7 |
比热容/(kJ/(kg·K)) | 1.1 |
热导率/(W/(m·K)) | 0.058 |
沸点/℃ | 61 |
潜热/(kJ/kg) | 50 |
流道 | 网格数/个 | 气泡平均 速度/(m/s) | 误差/% |
---|---|---|---|
直流道 | 41720 | 1.078 | |
20656 | 1.041 | 3.41 | |
13676 | 0.976 | 9.46 | |
10944 | 0.989 | 8.25 | |
30°双切线弧流道 | 44770 | 1.314 | |
23532 | 1.291 | 1.75 | |
16950 | 1.408 | 7.15 | |
11719 | 1.419 | 7.99 | |
45°双切线弧流道 | 46718 | 1.415 | |
27351 | 1.461 | 3.25 | |
21796 | 1.497 | 5.79 | |
17641 | 1.512 | 6.86 | |
60°双切线弧流道 | 61094 | 1.742 | |
33746 | 1.709 | 1.89 | |
25209 | 1.685 | 3.27 | |
18014 | 1.576 | 9.53 |
Table 2 Grid independence verification
流道 | 网格数/个 | 气泡平均 速度/(m/s) | 误差/% |
---|---|---|---|
直流道 | 41720 | 1.078 | |
20656 | 1.041 | 3.41 | |
13676 | 0.976 | 9.46 | |
10944 | 0.989 | 8.25 | |
30°双切线弧流道 | 44770 | 1.314 | |
23532 | 1.291 | 1.75 | |
16950 | 1.408 | 7.15 | |
11719 | 1.419 | 7.99 | |
45°双切线弧流道 | 46718 | 1.415 | |
27351 | 1.461 | 3.25 | |
21796 | 1.497 | 5.79 | |
17641 | 1.512 | 6.86 | |
60°双切线弧流道 | 61094 | 1.742 | |
33746 | 1.709 | 1.89 | |
25209 | 1.685 | 3.27 | |
18014 | 1.576 | 9.53 |
1 | 刘柳, 闫红杰, 谭智凯, 等. 静止液态金属中气泡上升过程实验研究[J]. 中南大学学报(自然科学版), 2021, 52(1): 294-302. |
Liu L, Yan H J, Tan Z K, et al. Experimental study on bubble rising process in stagnant liquid metals[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 294-302. | |
2 | 闫红杰, 赵国建, 刘柳, 等. 静止水中单气泡形状及上升规律的实验研究[J]. 中南大学学报(自然科学版), 2016, 47(7): 2513-2520. |
Yan H J, Zhao G J, Liu L, et al. Experimental study on shape and rising behavior of single bubble in stagnant water[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2513-2520. | |
3 | Chauhan S P, Eswaran M, Naveen K, et al. Experimental investigation on partially filled liquid pools under combined thermal and vibrational loads[J]. Experimental Thermal and Fluid Science, 2019, 101: 160-174. |
4 | 王明阳. 有源相控阵天线微通道冷板拓扑结构研究[D]. 成都: 电子科技大学, 2018. |
Wang M Y. Research on topological structure of microchannel cold plate for active phased array antenna[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
5 | Fang X D, Li G H, Li D K, et al. An experimental study of R134a flow boiling heat transfer in a 4.07 mm tube under earth’s gravity and hypergravity[J]. International Journal of Heat and Mass Transfer, 2015, 87: 399-408. |
6 | 张文峰, 庞明军. 单气泡上升对近壁面传热影响的数值研究[J]. 东北电力大学学报, 2021, 41(3): 28-38. |
Zhang W F, Pang M J. Numerical investigate on the effect of single bubble rising near the wall on heat transfer[J]. Journal of Northeast Electric Power University, 2021, 41(3): 28-38. | |
7 | Qian J Y, Wang R, Wei T, et al. Numerical analysis of flow boiling characteristics of a single channel heat sink subjected to multiple heat sources[J]. Energies, 2023, 16(7): 3060. |
8 | Takemura F, Takagi S, Magnaudet J, et al. Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid[J]. Journal of Fluid Mechanics, 2002, 461: 277-300. |
9 | Sugiyama K, Takemura F. On the lateral migration of a slightly deformed bubble rising near a vertical plane wall[J]. Journal of Fluid Mechanics, 2010, 662: 209-231. |
10 | Takemura F, Magnaudet J. The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2003, 495: 235-253. |
11 | Lee P C, Tseng F G, Pan C. Bubble dynamics in microchannels (Part Ⅰ): Single microchannel[J]. International Journal of Heat and Mass Transfer, 2004, 47(25): 5575-5589. |
12 | Zhang H, Mudawar I, Hasan M M. Application of flow boiling for thermal management of electronics in microgravity and reduced gravity space systems[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL, USA: IEEE, 2008: 949-959. |
13 | Westheimer D T, Peterson G P. Visualization of flow boiling in an annular heat exchanger under microgravity conditions[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(3): 333-339. |
14 | Howard A H, Mudawar I. Orientation effects on pool boiling CHF and modeling of CHF for near-vertical surfaces[J]. International Journal of Heat and Mass Transfer, 1999, 42: 1665-1688. |
15 | Luo X B, Mao Z M. Thermal modeling and design for microchannel cold plate with high temperature uniformity subjected to multiple heat sources[J]. International Communications in Heat and Mass Transfer, 2012, 39(6): 781-785. |
16 | Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. |
17 | Tan H, Du P G, Zong K, et al. Investigation on the temperature distribution in the two-phase spider netted microchannel network heat sink with non-uniform heat flux[J]. International Journal of Thermal Sciences, 2021, 169: 107079. |
18 | Mt Aznam S, Mori S, Ogoshi A, et al. CHF enhancement of a large heated surface by a honeycomb porous plate and a gridded metal structure in a saturated pool boiling of nanofluid[J]. International Journal of Heat and Mass Transfer, 2017, 115: 969-980. |
19 | Ebrahimi-Dehshali M, Najm-Barzanji S Z, Hakkaki-Fard A. Pool boiling heat transfer enhancement by twisted-tape fins[J]. Applied Thermal Engineering, 2018, 135: 170-177. |
20 | 李根, 方贤德, 罗组分, 等. 过载环境下水平管内水的流动沸腾特性[J]. 航空动力学报, 2022, 37(1): 46-54. |
Li G, Fang X D, Luo Z F, et al. Flow boiling characteristics of water in a horizontal tube under hypergravity environment[J]. Journal of Aerospace Power, 2022, 37(1): 46-54. | |
21 | 吴明婷, 高南京, 苗润晗, 等. 中心正交旋转管道内流动沸腾汽液分布特性的数值分析[J]. 中国电机工程学报, 2020, 40(6): 1947-1954. |
Wu M T, Gao N J, Miao R H, et al. Numerical analysis of boiling vapor-liquid distribution in a central orthogonal rotating pipe[J]. Proceedings of the CSEE, 2020, 40(6): 1947-1954. | |
22 | Tanjung E F, Albdour S A, Jeong Y U. Critical heat flux (CHF) in pool boiling under static and rolling conditions[J]. Nuclear Engineering and Technology, 2020, 52(3): 520-529. |
23 | Tanjung E F, Alunda B O, Lee Y J, et al. Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles[J]. Nuclear Engineering and Technology, 2018, 50(7): 1068-1078. |
24 | Tanjung E F, Jo D. Surface orientation effects on bubble behaviors and critical heat flux mechanism in saturated water pool[J]. International Journal of Heat and Mass Transfer, 2019, 133: 179-191. |
25 | Manetti L L, Moita A S O H, de Souza R R, et al. Effect of copper foam thickness on pool boiling heat transfer of HFE-7100[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119547. |
26 | Chang W, Luo K, Li W M, et al. Enhanced flow boiling of HFE-7100 in silicon microchannels with nanowires coated micro-pinfins[J]. Applied Thermal Engineering, 2022, 216: 119064. |
27 | Davani S, Zhang B, Doran B, et al. Subcooled pool boiling on hierarchical micro- and nanostructure-modified copper surfaces in HFE-7100 dielectric liquid[J]. Nanoscale and Microscale Thermophysical Engineering, 2024, 28(1): 59-68. |
28 | Samkhaniani N, Ansari M R. Numerical simulation of bubble condensation using CF-VOF[J]. Progress in Nuclear Energy, 2016, 89: 120-131. |
29 | Lu Q, Chen D Q, Huang Y P, et al. Visual investigation on the coalescence process and the thermal-hydraulic characteristics of the two-phase interface morphology in narrow vertical channel[J]. International Journal of Heat and Mass Transfer, 2017, 115: 537-550. |
30 | Liu H D, Liu W, Yan P G, et al. The role mechanism of vapor-liquid behavior on boiling crisis triggering[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123248. |
[1] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[2] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[3] | Liang ZHAO, Yuqiao LI, De ZHANG, Shengqiang SHEN. Experimental study of internal and external field characteristics of spiral nozzle [J]. CIESC Journal, 2024, 75(8): 2777-2786. |
[4] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[5] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[6] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[7] | Yanxi LI, Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO. Study on separation characteristics and structure optimization of a volute type multi-channel gas-liquid cyclone separator [J]. CIESC Journal, 2024, 75(8): 2875-2885. |
[8] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
[9] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[10] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[11] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[12] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[13] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
[14] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[15] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 285
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||