CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1635-1646.DOI: 10.11949/0438-1157.20241121

• Process system engineering • Previous Articles     Next Articles

TTPA-LSTM soft sensor modeling for multi-sampling rate data

Fazheng WANG1(), Lin SUI1, Weili XIONG1,2()   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
    2.Key Laboratory of Advanced Process Control for Industry, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2024-10-10 Revised:2024-11-25 Online:2025-05-12 Published:2025-04-25
  • Contact: Weili XIONG

面向多采样率数据的TTPA-LSTM软测量建模

王法正1(), 隋璘1, 熊伟丽1,2()   

  1. 1.江南大学物联网工程学院,江苏 无锡 214122
    2.江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 通讯作者: 熊伟丽
  • 作者简介:王法正(2001—),男,硕士研究生,6231913050@stu.jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金项目(61773182);国家重点研发计划子课题项目(2018YFC1603705-03);江南大学“轻工技术与工程”双一流学科与支撑学科协同发展支持计划项目(QGJC20230203)

Abstract:

In practical industrial production, the time lags and sampling rate differences among process variables can deteriorate the modeling quality, rendering many soft sensing models inapplicable. Therefore, a soft sensing modeling approach based on time-aware temporal pattern attention (TTPA) mechanism and long short-term memory network is proposed. In this study, we first reconstruct the data corresponding to high and low sampling rates into short-term and long-term information, respectively. A time-aware module is utilized to decompose the input information while considering the characteristics of time intervals. To address the issue of low proportion of quality-related information, a non-increasing heuristic decay function is designed to weight the short-term information. By combining these weighted components, we derive an integrated feature set that encapsulates both short-term and long-term information, thereby mitigating the impact of data loss resulting from multiple sampling rates. Secondly, a feature optimization module is introduced to achieve two-dimensional filtering of features, and the time lag information in the multivariate time series is analyzed across time steps to obtain more effective quality-related features. Finally, a soft sensing model based on TTPA-based long short-term memory network is established. The effectiveness and superiority of the proposed model were verified through the application simulation of IndPensim process and debutanizer process.

Key words: multi-sampling rate, time-aware temporal pattern attention, long short-term memory network, soft-sensor, neural networks, process control, dynamic modeling

摘要:

实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高、低采样率对应的数据分别重构为短期和长期信息,采用时间感知模块将输入信息分解并考虑时间间隔特性,针对质量相关信息占比低的问题,设计非递增启发式衰减函数对短期信息进行加权,组合后获得长短期信息集成特征,降低因多采样率产生的数据缺失影响。其次,引入特征优化模块实现特征二维滤波,跨时间步解析多元时间序列中的时滞信息,获取更有效的质量相关特征。最后,搭建了基于TTPA的长短期记忆网络软测量模型。通过工业青霉素发酵过程和脱丁烷塔过程的应用仿真,验证了所提模型的有效性和优越性。

关键词: 多采样率, 时间感知模式注意力, 长短时记忆网络, 软测量, 神经网络, 过程控制, 动态建模

CLC Number: