CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1635-1646.DOI: 10.11949/0438-1157.20241121
• Process system engineering • Previous Articles Next Articles
Fazheng WANG1(), Lin SUI1, Weili XIONG1,2(
)
Received:
2024-10-10
Revised:
2024-11-25
Online:
2025-05-12
Published:
2025-04-25
Contact:
Weili XIONG
通讯作者:
熊伟丽
作者简介:
王法正(2001—),男,硕士研究生,6231913050@stu.jiangnan.edu.cn
基金资助:
CLC Number:
Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data[J]. CIESC Journal, 2025, 76(4): 1635-1646.
王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646.
符号 | 变量名称 | 采样间隔/min |
---|---|---|
RW | 加热/冷却水流速 | 12 |
VV | 容器体积 | 12 |
VW | 容器质量 | 12 |
废气二氧化碳浓度 | 24 | |
废气氧浓度 | 24 | |
碳吸收速率 | 12 | |
氧吸收速率 | 12 | |
P | 青霉素浓度 | 60 |
Table 1 Variable description of IndPensim
符号 | 变量名称 | 采样间隔/min |
---|---|---|
RW | 加热/冷却水流速 | 12 |
VV | 容器体积 | 12 |
VW | 容器质量 | 12 |
废气二氧化碳浓度 | 24 | |
废气氧浓度 | 24 | |
碳吸收速率 | 12 | |
氧吸收速率 | 12 | |
P | 青霉素浓度 | 60 |
所用模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
MLP | 5.55531 | 4.48582 | 4.03364 | 0.69172 |
RNN | 4.54358 | 3.77206 | 5.97488 | 0.79377 |
NI[ | 3.52126 | 2.63703 | 1.24222 | 0.87614 |
MSDF[ | 3.32183 | 2.54239 | 1.53001 | 0.88978 |
SFA-MLP[ | 2.81958 | 2.05189 | 1.21357 | 0.92058 |
SA-TLSTM | 2.57029 | 1.87089 | 0.84318 | 0.93401 |
TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
Table 2 The prediction evaluation metrics for penicillin concentration of various models
所用模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
MLP | 5.55531 | 4.48582 | 4.03364 | 0.69172 |
RNN | 4.54358 | 3.77206 | 5.97488 | 0.79377 |
NI[ | 3.52126 | 2.63703 | 1.24222 | 0.87614 |
MSDF[ | 3.32183 | 2.54239 | 1.53001 | 0.88978 |
SFA-MLP[ | 2.81958 | 2.05189 | 1.21357 | 0.92058 |
SA-TLSTM | 2.57029 | 1.87089 | 0.84318 | 0.93401 |
TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
LSTM | 3.80403 | 3.07299 | 1.71857 | 0.85545 |
TLSTM | 2.86516 | 2.46471 | 2.02471 | 0.91799 |
TPA-LSTM | 2.74571 | 2.02671 | 0.68686 | 0.92469 |
TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
Table 3 The prediction evaluation metrics for penicillin concentration of ablation experiments
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
LSTM | 3.80403 | 3.07299 | 1.71857 | 0.85545 |
TLSTM | 2.86516 | 2.46471 | 2.02471 | 0.91799 |
TPA-LSTM | 2.74571 | 2.02671 | 0.68686 | 0.92469 |
TTPA-LSTM | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
子集序号 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
1 | 1.38802 | 1.07046 | 0.82576 | 0.98066 |
2 | 1.26901 | 0.99769 | 0.85675 | 0.98213 |
3 | 1.36301 | 1.04380 | 0.43557 | 0.98136 |
4 | 1.43175 | 1.07177 | 0.55785 | 0.97943 |
5 | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
Table 4 The prediction evaluation metrics for penicillin concentration of K-fold cross-validation
子集序号 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
1 | 1.38802 | 1.07046 | 0.82576 | 0.98066 |
2 | 1.26901 | 0.99769 | 0.85675 | 0.98213 |
3 | 1.36301 | 1.04380 | 0.43557 | 0.98136 |
4 | 1.43175 | 1.07177 | 0.55785 | 0.97943 |
5 | 1.22438 | 0.92089 | 0.34144 | 0.98503 |
符号 | 变量名称 | 采样间隔/min |
---|---|---|
x1 | 塔顶端温度 | 10 |
x2 | 塔顶端压力 | 10 |
x3 | 塔顶端回流量 | 20 |
x4 | 塔顶端出料量 | 20 |
x5 | 塔板6温度 | 10 |
x6 | 塔底温度1 | 10 |
x7 | 塔底温度2 | 10 |
y | 塔底丁烷含量 | 40 |
Table 5 Variable description of debutanizer
符号 | 变量名称 | 采样间隔/min |
---|---|---|
x1 | 塔顶端温度 | 10 |
x2 | 塔顶端压力 | 10 |
x3 | 塔顶端回流量 | 20 |
x4 | 塔顶端出料量 | 20 |
x5 | 塔板6温度 | 10 |
x6 | 塔底温度1 | 10 |
x7 | 塔底温度2 | 10 |
y | 塔底丁烷含量 | 40 |
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
NI[ | 0.04298 | 0.03221 | 0.12219 | 0.93912 |
MSDF[ | 0.03623 | 0.02836 | 0.11641 | 0.95685 |
SFA-MLP[ | 0.03494 | 0.02507 | 0.09652 | 0.95978 |
TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
Table 6 Prediction and evaluation indicators of multirate sampling models in the debutanizer dataset
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
NI[ | 0.04298 | 0.03221 | 0.12219 | 0.93912 |
MSDF[ | 0.03623 | 0.02836 | 0.11641 | 0.95685 |
SFA-MLP[ | 0.03494 | 0.02507 | 0.09652 | 0.95978 |
TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
LSTM | 0.04665 | 0.03765 | 0.14688 | 0.92874 |
TLSTM | 0.03296 | 0.02649 | 0.10634 | 0.96469 |
TPA-LSTM | 0.03698 | 0.02693 | 0.09838 | 0.95512 |
TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
Table 7 Predictive evaluation indicators for ablation experiments on the debutanizer dataset
模型 | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
LSTM | 0.04665 | 0.03765 | 0.14688 | 0.92874 |
TLSTM | 0.03296 | 0.02649 | 0.10634 | 0.96469 |
TPA-LSTM | 0.03698 | 0.02693 | 0.09838 | 0.95512 |
TTPA-LSTM | 0.02424 | 0.01822 | 0.08607 | 0.98089 |
1 | 熊伟丽, 孙文心, 马君霞. 带自相关约束的NARX动态软测量模型[J]. 控制与决策, 2020, 35(4): 816-822. |
Xiong W L, Sun W X, Ma J X. Autocorrelation constrained NARX dynamic soft sensing model[J]. Control and Decision, 2020, 35(4): 816-822. | |
2 | Jiang Y C, Yin S, Dong J W, et al. A review on soft sensors for monitoring, control, and optimization of industrial processes[J]. IEEE Sensors Journal, 2021, 21(11): 12868-12881. |
3 | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
Li H T, Wang Z L, Wang X. Improved conditional Gaussian regression soft sensor based on just-in-time learning[J]. CIESC Journal, 2024, 75(6): 2299-2312. | |
4 | 李祥宇, 隋璘, 马君霞, 等. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633. |
Li X Y, Sui L, Ma J X, et al. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting[J]. CIESC Journal, 2023, 74(11): 4622-4633. | |
5 | Narayanan H, Luna M F, von Stosch M, et al. Bioprocessing in the digital age: the role of process models[J]. Biotechnology Journal, 2020, 15(1): e1900172. |
6 | Wang K C, Shang C, Liu L, et al. Dynamic soft sensor development based on convolutional neural networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(26): 11521-11531. |
7 | Yin S L, Li Y G, Sun B, et al. Mixed kernel principal component weighted regression based on just-in-time learning for soft sensor modeling[J]. Measurement Science and Technology, 2022, 33(1): 015102. |
8 | 程康明, 熊伟丽. 一种自训练框架下的三优选半监督回归算法[J]. 智能系统学报, 2020, 15(3): 568-577. |
Cheng K M, Xiong W L. Three-optimal semi-supervised regression algorithm under self-training framework[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 568-577. | |
9 | Li X H, Ma J W. Domain adaptation based on semi-supervised cross-domain mean discriminative analysis and kernel transfer extreme learning machine[J]. Sensors, 2023, 23(13): 6102. |
10 | Ye Z, Cheng X, Ding X, et al. A new unconditionally stable FDTD method based on artificial neural network[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(10): 5759-5767. |
11 | Wang J Y, Yao L, Xiong W L. Novel semi-supervised deep probabilistic slow feature extraction for online chemical process soft sensing application[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2517711. |
12 | Chai Z, Zhao C H, Huang B. Variational progressive-transfer network for soft sensing of multirate industrial processes[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 12882-12892. |
13 | Liu D J, Wang Y L, Liu C L, et al. Multirate-former: an efficient transformer-based hierarchical network for multistep prediction of multirate industrial processes[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 2502313. |
14 | Lyu Y T, Zhou L, Cong Y, et al. Multirate mixture probability principal component analysis for process monitoring in multimode processes[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(2): 2027-2038. |
15 | Lin B, Recke B, Knudsen J K H, et al. Data-driven soft sensor design with multiple-rate sampled data: a comparative study[C]//2007 European Control Conference (ECC). Kos, Greece: IEEE, 2007: 4740-4745. |
16 | Grujić D N. Numerical Hilbert transform algorithm for causal interpolation of functions represented by cubic and exponential splines[J]. IEEE Access, 2021, 9: 136702-136709. |
17 | Zhang S M, Zhao C H. Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3773-3783. |
18 | He K J, Yang Q, Ji L, et al. Financial time series forecasting with the deep learning ensemble model[J]. Mathematics, 2023, 11(4): 1054. |
19 | Zheng J Q, Ma L W, Wu Y, et al. Nonlinear dynamic soft sensor development with a supervised hybrid CNN-LSTM network for industrial processes[J]. ACS Omega, 2022, 7(19): 16653-16664. |
20 | Baytas I M, Xiao C, Zhang X, et al. Patient subtyping via time-aware LSTM networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada: ACM, 2017: 65-74. |
21 | 曹鲁慧, 秦丰林, 闫中敏. 基于TLSTM的医疗保险欺诈检测[J]. 计算机工程与应用, 2020, 56(21): 237-241. |
Cao L H, Qin F L, Yan Z M. TLSTM-based medical insurance fraud detection[J]. Computer Engineering and Applications, 2020, 56(21): 237-241. | |
22 | 李妍君, 熊伟丽, 徐保国. 一种带过程变量时滞估计的在线软测量建模方法[J]. 信息与控制, 2016, 45(6): 641-646. |
Li Y J, Xiong W L, Xu B G. An online soft-sensor modeling method including process variable time-delay estimation[J]. Information and Control, 2016, 45(6): 641-646. | |
23 | 陈为胜, 李俊民. 非线性时滞大系统自适应神经网络分散控制[J]. 控制与决策, 2006, 21(8): 873-878. |
Chen W S, Li J M. Adaptive neural network decentralized control for nonlinear time-delay large-scale systems[J]. Control and Decision, 2006, 21(8): 873-878. | |
24 | 张晓迪, 蔡云泽, 何星, 等. 基于神经网络的不稳定时滞对象控制[J]. 上海交通大学学报, 2014, 48(7): 1033-1038. |
Zhang X D, Cai Y Z, He X, et al. Neural network control for unstable processes with time delay[J]. Journal of Shanghai Jiao Tong University, 2014, 48(7): 1033-1038. | |
25 | 孙凯, 隋璘, 张芳芳, 等. 基于非负绞杀与长短期记忆神经网络的动态软测量算法[J]. 控制理论与应用, 2023, 40(1): 83-93. |
Sun K, Sui L, Zhang F F, et al. Dynamic soft sensor algorithm based on nonnegative garrote and long short-term memory neural network[J]. Control Theory & Applications, 2023, 40(1): 83-93. | |
26 | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
Yan L Q, Wang Z L. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model[J]. CIESC Journal, 2023, 74(8): 3407-3418. | |
27 | Xia J, Feng Y W, Lu C, et al. LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems[J]. Engineering Failure Analysis, 2021, 125: 105385. |
28 | Shih S Y, Sun F K, Lee H Y. Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 2019, 108(8): 1421-1441. |
29 | Duan R, Liu J, Zhou J Z, et al. Study on performance evaluation and prediction of francis turbine units considering low-quality data and variable operating conditions[J]. Applied Sciences, 2022, 12(10): 4866. |
30 | Ren L, Wang T, Yuanjun L L, et al. A data-driven self-supervised LSTM-DeepFM model for industrial soft sensor[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5859-5869. |
31 | Zhang X R, Song C Y, Zhao J, et al. Domain adaptation mixture of Gaussian processes for online soft sensor modeling of multimode processes when sensor degradation occurs[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4654-4664. |
32 | Jia M W, Xu D Y, Yang T, et al. Graph convolutional network soft sensor for process quality prediction[J]. Journal of Process Control, 2023, 123: 12-25. |
33 | Sun W X, Xiong W L, Chen H T, et al. A novel CVAE-based sequential Monte Carlo framework for dynamic soft sensor applications[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3789-3800. |
[1] | Xinmei ZHANG, Ao ZHANG, Dehua QIU, Xiaoshuang LIU, Chen CHEN. Dynamic domino effect assessment method based on thermal response mechanism of pool fire in tank farm [J]. CIESC Journal, 2025, 76(4): 1885-1897. |
[2] | Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network [J]. CIESC Journal, 2025, 76(4): 1671-1679. |
[3] | Xinyu ZHENG, Zehua REN, Li ZHOU, Shiyang CHAI, Xu JI. Lattice energy regression model based on crystal graph convolutional neural networks [J]. CIESC Journal, 2025, 76(3): 1084-1092. |
[4] | Dafen WANG, Lili TANG, Xinyan ZHANG, Chunyu NIE, Mingzhu LI, Jing WU. Multi-output tri-training heterogeneous soft sensor modeling based on time difference [J]. CIESC Journal, 2025, 76(3): 1143-1155. |
[5] | Shaoji WANG, Kuangrong HAO, Lei CHEN. Research on temperature forecasting of polyester fiber esterification process based on federated learning [J]. CIESC Journal, 2025, 76(1): 283-295. |
[6] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
[7] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[8] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
[9] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[10] | Jianwen ZHANG, Tingsheng ZHAO, Pingyu WAN, Qianlin WANG, Zhan DOU, Bo XU. Discussion on integrated security control in process industry [J]. CIESC Journal, 2024, 75(6): 2375-2384. |
[11] | Yuhang HE, Dan XIE, Yangcheng LYU. Research progress of cationic polymerization in microreactor [J]. CIESC Journal, 2024, 75(4): 1302-1316. |
[12] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[13] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[14] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[15] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||