CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1143-1155.DOI: 10.11949/0438-1157.20240872
• Process system engineering • Previous Articles Next Articles
Dafen WANG1(), Lili TANG2, Xinyan ZHANG1, Chunyu NIE1, Mingzhu LI3, Jing WU1,3(
)
Received:
2024-08-01
Revised:
2024-09-27
Online:
2025-03-28
Published:
2025-03-25
Contact:
Jing WU
王大芬1(), 唐莉丽2, 张鑫焱1, 聂春雨1, 李明珠3, 吴菁1,3(
)
通讯作者:
吴菁
作者简介:
王大芬(1998—),女,硕士研究生,wangdafen2024@163.com
基金资助:
CLC Number:
Dafen WANG, Lili TANG, Xinyan ZHANG, Chunyu NIE, Mingzhu LI, Jing WU. Multi-output tri-training heterogeneous soft sensor modeling based on time difference[J]. CIESC Journal, 2025, 76(3): 1143-1155.
王大芬, 唐莉丽, 张鑫焱, 聂春雨, 李明珠, 吴菁. 基于时差的多输出tri-training异构软测量建模[J]. 化工学报, 2025, 76(3): 1143-1155.
评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co-T | Tri-T | TD-Tri-T |
---|---|---|---|---|---|---|---|---|---|
RMSE | SS | 0.0329 | 0.0155 | 0.0444 | 0.0530 | 0.0114 | 0.0088 | 0.0046 | 0.0002 |
SNH | 2.0334 | 2.8299 | 1.2665 | 1.6792 | 2.9049 | 1.3308 | 0.6824 | 0.0480 | |
SNO | 1.2883 | 1.4613 | 0.9687 | 0.9366 | 1.7349 | 0.3288 | 0.3176 | 0.0120 | |
COD | 1.3037 | 1.8082 | 1.2151 | 2.4669 | 2.9519 | 0.5237 | 0.3353 | 0.1169 | |
BOD5 | 0.0187 | 0.0195 | 0.0201 | 0.0191 | 0.0332 | 0.0048 | 0.0049 | 0.0027 | |
R | SS | 0.9005 | 0.8702 | 0.8581 | 0.7497 | 0.8710 | 0.8796 | 0.9619 | 0.9975 |
SNH | 0.9530 | 0.8329 | 0.9390 | 0.8954 | 0.8337 | 0.9268 | 0.9652 | 0.9972 | |
SNO | 0.9447 | 0.8780 | 0.9428 | 0.8970 | 0.8773 | 0.9514 | 0.9713 | 0.9982 | |
COD | 0.9730 | 0.8772 | 0.9660 | 0.8837 | 0.8771 | 0.9549 | 0.9742 | 0.9892 | |
BOD5 | 0.9923 | 0.9599 | 0.9904 | 0.9817 | 0.9604 | 0.9835 | 0.9911 | 0.9900 | |
RMSSD | — | 2.1626 | 2.4768 | 1.8748 | 2.2704 | 2.7634 | 1.4829 | 1.1597 | 0.4241 |
RR | — | 0.7308 | 0.6469 | 0.7977 | 0.7033 | 0.5604 | 0.8734 | 0.9226 | 0.9896 |
Table 1 Comparison of model predictions in BSM1
评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co-T | Tri-T | TD-Tri-T |
---|---|---|---|---|---|---|---|---|---|
RMSE | SS | 0.0329 | 0.0155 | 0.0444 | 0.0530 | 0.0114 | 0.0088 | 0.0046 | 0.0002 |
SNH | 2.0334 | 2.8299 | 1.2665 | 1.6792 | 2.9049 | 1.3308 | 0.6824 | 0.0480 | |
SNO | 1.2883 | 1.4613 | 0.9687 | 0.9366 | 1.7349 | 0.3288 | 0.3176 | 0.0120 | |
COD | 1.3037 | 1.8082 | 1.2151 | 2.4669 | 2.9519 | 0.5237 | 0.3353 | 0.1169 | |
BOD5 | 0.0187 | 0.0195 | 0.0201 | 0.0191 | 0.0332 | 0.0048 | 0.0049 | 0.0027 | |
R | SS | 0.9005 | 0.8702 | 0.8581 | 0.7497 | 0.8710 | 0.8796 | 0.9619 | 0.9975 |
SNH | 0.9530 | 0.8329 | 0.9390 | 0.8954 | 0.8337 | 0.9268 | 0.9652 | 0.9972 | |
SNO | 0.9447 | 0.8780 | 0.9428 | 0.8970 | 0.8773 | 0.9514 | 0.9713 | 0.9982 | |
COD | 0.9730 | 0.8772 | 0.9660 | 0.8837 | 0.8771 | 0.9549 | 0.9742 | 0.9892 | |
BOD5 | 0.9923 | 0.9599 | 0.9904 | 0.9817 | 0.9604 | 0.9835 | 0.9911 | 0.9900 | |
RMSSD | — | 2.1626 | 2.4768 | 1.8748 | 2.2704 | 2.7634 | 1.4829 | 1.1597 | 0.4241 |
RR | — | 0.7308 | 0.6469 | 0.7977 | 0.7033 | 0.5604 | 0.8734 | 0.9226 | 0.9896 |
评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co- T | Tri-T | TD-Tri-T |
---|---|---|---|---|---|---|---|---|---|
RMSE | RD-DBO-S | 5.5993 | 9.4782 | 9.7191 | 8.2374 | 8.1915 | 6.8208 | 6.0088 | 2.2027 |
RD-DQO-S | 9.2398 | 30.2485 | 22.0837 | 16.1403 | 32.0591 | 20.7495 | 16.2536 | 5.1481 | |
DQO-S | 47.7297 | 178.8840 | 130.8652 | 102.2509 | 175.5264 | 141.0183 | 79.3885 | 26.2291 | |
DBO-S | 5.1726 | 9.7693 | 7.8801 | 9.1391 | 9.9370 | 7.251 | 4.8671 | 2.7903 | |
R | RD-DBO-S | 0.9110 | 0.8608 | 0.8437 | 0.8753 | 0.8708 | 0.8916 | 0.9125 | 0.9668 |
RD-DQO-S | 0.9221 | 0.7105 | 0.8309 | 0.8646 | 0.7111 | 0.8188 | 0.8651 | 0.9577 | |
DQO-S | 0.9142 | 0.6191 | 0.7675 | 0.8106 | 0.6281 | 0.7707 | 0.8682 | 0.9560 | |
DBO-S | 0.9030 | 0.8046 | 0.8482 | 0.8260 | 0.8057 | 0.8657 | 0.9181 | 0.9493 | |
RMSSD | — | 8.2305 | 15.1122 | 13.0594 | 11.6519 | 15.0238 | 13.2605 | 10.3208 | 6.0308 |
RR | — | 0.8345 | 0.4421 | 0.5833 | 0.6683 | 0.4486 | 0.5704 | 0.7398 | 0.9111 |
Table 2 Comparison of prediction results of each model in UCI
评价指标 | 预测变量 | MGPR | MRVM | MLSSVM | Tri-MPLS | Tri-MRVM | Co- T | Tri-T | TD-Tri-T |
---|---|---|---|---|---|---|---|---|---|
RMSE | RD-DBO-S | 5.5993 | 9.4782 | 9.7191 | 8.2374 | 8.1915 | 6.8208 | 6.0088 | 2.2027 |
RD-DQO-S | 9.2398 | 30.2485 | 22.0837 | 16.1403 | 32.0591 | 20.7495 | 16.2536 | 5.1481 | |
DQO-S | 47.7297 | 178.8840 | 130.8652 | 102.2509 | 175.5264 | 141.0183 | 79.3885 | 26.2291 | |
DBO-S | 5.1726 | 9.7693 | 7.8801 | 9.1391 | 9.9370 | 7.251 | 4.8671 | 2.7903 | |
R | RD-DBO-S | 0.9110 | 0.8608 | 0.8437 | 0.8753 | 0.8708 | 0.8916 | 0.9125 | 0.9668 |
RD-DQO-S | 0.9221 | 0.7105 | 0.8309 | 0.8646 | 0.7111 | 0.8188 | 0.8651 | 0.9577 | |
DQO-S | 0.9142 | 0.6191 | 0.7675 | 0.8106 | 0.6281 | 0.7707 | 0.8682 | 0.9560 | |
DBO-S | 0.9030 | 0.8046 | 0.8482 | 0.8260 | 0.8057 | 0.8657 | 0.9181 | 0.9493 | |
RMSSD | — | 8.2305 | 15.1122 | 13.0594 | 11.6519 | 15.0238 | 13.2605 | 10.3208 | 6.0308 |
RR | — | 0.8345 | 0.4421 | 0.5833 | 0.6683 | 0.4486 | 0.5704 | 0.7398 | 0.9111 |
1 | 张志文. 污水处理过程中软测量技术的研究及应用[J]. 城市建设理论研究(电子版), 2018(16): 70. |
Zhang Z W. Research and application of soft sensor technology in sewage treatment process[J]. Theoretical Research in Urban Construction, 2018(16): 70. | |
2 | 苗露, 姚怡帆, 王黎佳, 等. 基于GA-机器学习模型的污水处理厂BOD软测量研究[J]. 青岛理工大学学报, 2023, 44(2): 133-139. |
Miao L, Yao Y F, Wang L J, et al. Research on BOD soft sensing of wastewater treatment plant based on GA-machine learning model[J]. Journal of Qingdao University of Technology, 2023, 44(2): 133-139. | |
3 | 金绍琴, 唐莉丽, 吴菁, 等. 基于时差-即时学习的相关向量机软测量建模研究[J]. 自动化与信息工程, 2023, 44(5): 22-31. |
Jin S Q, Tang L L, Wu J, et al. Research on soft sensor modeling of relevance vector machine based on time difference-just in time[J]. Automation & Information Engineering, 2023, 44(5): 22-31. | |
4 | 方港, 袁珑华, 王晓明, 等. 基于集合卡尔曼-Elman网络的软测量建模方法[J]. 华南理工大学学报(自然科学版), 2023, 51(8): 126-136. |
Fang G, Yuan L H, Wang X M, et al. Soft-sensor modeling method based on ensemble Kalman filter-Elman neural network[J]. Journal of South China University of Technology (Natural Science Edition), 2023, 51(8): 126-136. | |
5 | Yan W W, Guo P J, Tian Y, et al. A framework and modeling method of data-driven soft sensors based on semisupervised Gaussian regression[J]. Industrial & Engineering Chemistry Research, 2016, 55(27): 7394-7401. |
6 | Alkaim A F, Al_Janabi S. Multi objectives optimization to gas flaring reduction from oil production[M]//Lecture Notes in Networks and Systems. Cham: Springer International Publishing, 2019: 117-139. |
7 | Bao L, Yuan X F, Ge Z Q. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147: 75-85. |
8 | Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data[C]//Proceedings of the Seventeenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2000: 327-334. |
9 | Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training[C]//Proceedings of the Ninth International Conference on Information and Knowledge Management. McLean Virginia, USA: ACM, 2000: 86-93. |
10 | 李东, 黄道平, 刘乙奇. 基于协同训练的半监督异构自适应软测量建模方法的研究[J]. 化工学报, 2020, 71(5): 2128-2138. |
Li D, Huang D P, Liu Y Q. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model[J]. CIESC Journal, 2020, 71(5): 2128-2138. | |
11 | Wu J, Tang L L, Jin S Q, et al. Modeling an adaptive hybrid soft sensor with co-training learning toward applications in wastewater treatment[J]. Industrial & Engineering Chemistry Research, 2023, 62(41): 16841-16853. |
12 | Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541. |
13 | Zhu X Y, Zhang H B, Ren Q, et al. A tri-training method for lithofacies identification under scarce labeled logging data[J]. Earth Science Informatics, 2023, 16(2): 1489-1501. |
14 | Li Z B, Zhang S P. A semi-supervised deep learning method in network intrusion detection[C]//International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2023). Nanjing, China: SPIE, 2023: 127180F. |
15 | Zhou Z H, Li M. Semi-supervised regression with co-training[C]//Proceedings of the 19th International Joint Conference on Artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2005: 908-913. |
16 | Li D, Liu Y Q, Huang D P. Development of semi-supervised multiple-output soft-sensors with co-training and tri-training MPLS and MRVM[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 199: 103970. |
17 | Tang Y Q, Tang K J, Zhu C Z, et al. Static voltage stability margin prediction of island microgrid based on tri-training-lasso-BP network[C]//2020 IEEE Power & Energy Society General Meeting (PESGM). Montreal, QC, Canada: IEEE, 2020: 1-5. |
18 | Chen X H, Zhao J L, Xu M, et al. A quality prediction method based on tri-training weighted ensemble just-in-time learning-relevance vector machine model[J]. Processes, 2023, 11(11): 3129. |
19 | Souza F A A, Araújo R, Mendes J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79. |
20 | 李东, 黄道平, 许翀, 等. 基于协同训练的集成自适应GPR-RVM多输出模型研究[J]. 华南理工大学学报(自然科学版), 2021, 49(6): 100-108. |
Li D, Huang D P, Xu C, et al. On integrated adaptive GPR-RVM multi-output model based on co-training algorithm[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(6): 100-108. | |
21 | Fang G, Liu Y Q, Cai B P, et al. A hierarchical soft-sensor using spatiotemporal information transformation and ARMA with application in wastewater treatment[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3000511. |
22 | Cong Q M, Yu W. Integrated soft sensor with wavelet neural network and adaptive weighted fusion for water quality estimation in wastewater treatment process[J]. Measurement, 2018, 124: 436-446. |
23 | Jin H P, Chen X G, Yang J W, et al. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes[J]. Computers & Chemical Engineering, 2014, 71: 77-93. |
24 | Yeo W S, Saptoro A, Kumar P, et al. Just-in-time based soft sensors for process industries: a status report and recommendations[J]. Journal of Process Control, 2023, 128: 103025. |
25 | 肖红军, 刘乙奇, 黄道平. 高斯过程建模方法在工业过程中的应用[J]. 华南理工大学学报(自然科学版), 2016, 44(12): 36-43, 52. |
Xiao H J, Liu Y Q, Huang D P. Application of Gaussian process modeling method in industrial processes[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 36-43, 52. | |
26 | 陈祝丹, 李大字, 刘军, 等. 基于高斯过程回归的橡胶玻璃化温度的预测研究[J]. 橡胶工业, 2022, 69(11): 826-829. |
Chen Z D, Li D Z, Liu J, et al. Study on prediction of glass transition temperature of rubber based on Gaussian process regression[J]. China Rubber Industry, 2022, 69(11): 826-829. | |
27 | Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1: 211-244. |
28 | Liu Y Q, Liu B, Zhao X J, et al. Development of RVM-based multiple-output soft sensors with serial and parallel stacking strategies[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2727-2734. |
29 | Arasanathan T. Template-based pose estimation and tracking of 3D hand motion[D]. Cambridge, East of England, UK: University of Cambridge, 2006. |
30 | 许玉格, 曹涛, 罗飞. 基于相关向量机的污水处理出水水质预测模型[J]. 华南理工大学学报(自然科学版), 2014, 42(5): 103-108. |
Xu Y G, Cao T, Luo F. Wastewater effluent quality prediction model based on relevance vector machine[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(5): 103-108. | |
31 | Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. |
32 | Liu Z J, Wan J Q, Ma Y W, et al. Online prediction of effluent COD in the anaerobic wastewater treatment system based on PCA-LSSVM algorithm[J]. Environmental Science and Pollution Research International, 2019, 26(13): 12828-12841. |
33 | 张英, 苏宏业, 褚健. 基于模糊最小二乘支持向量机的软测量建模[J]. 控制与决策, 2005, 20(6): 621-624. |
Zhang Y, Su H Y, Chu J. Soft sensor modeling based on fuzzy least squares support vector machines[J]. Control and Decision, 2005, 20(6): 621-624. | |
34 | 牛焕然, 黄国燕, 黄蓉, 等. 基于卡尔曼滤波算法的风电机组动态推力消减控制策略[J]. 太阳能, 2024(1): 43-50. |
Niu H R, Huang G Y, Huang R, et al. Dynamic thrust reduction control strategy of wind turbine based on Kalman filtering algorithm[J]. Solar Energy, 2024(1): 43-50. | |
35 | Kaffash-Charandabi N, Alesheikh A A, Sharif M. A ubiquitous asthma monitoring framework based on ambient air pollutants and individuals' contexts[J]. Environmental Science and Pollution Research International, 2019, 26(8): 7525-7539. |
36 | Zhou Z H, Li M. Semisupervised regression with cotraining-style algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(11): 1479-1493. |
37 | 吴菁, 刘乙奇, 刘坚, 等. 基于动态多核相关向量机的软测量建模研究[J]. 化工学报, 2019, 70(4): 1472-1484. |
Wu J, Liu Y Q, Liu J, et al. Study on the soft sensor of multi-kernel relevance vector machine based on time difference[J]. CIESC Journal, 2019, 70(4): 1472-1484. | |
38 | Li D, Huang D P, Yu G P, et al. Learning adaptive semi-supervised multi-output soft-sensors with co-training of heterogeneous models[J]. IEEE Access, 2020, 8: 46493-46504. |
39 | Liu Y Q, Huang D P, Li Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3356-3367. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||