CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2348-2357.DOI: 10.11949/0438-1157.20241220
• Separation engineering • Previous Articles Next Articles
Zijuan LI(
), Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU(
), Faquan YU(
)
Received:2024-10-31
Revised:2024-12-03
Online:2025-06-13
Published:2025-05-25
Contact:
Jie LIU, Faquan YU
李紫鹃(
), 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷(
), 喻发全(
)
通讯作者:
刘捷,喻发全
作者简介:李紫鹃(2002—),女,硕士研究生,zijuan_wit@163.com
基金资助:CLC Number:
Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane[J]. CIESC Journal, 2025, 76(5): 2348-2357.
李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Structure of CANAL-Me-S5F polymer (a) and sorption (b) and permeation(c) processes of CO2/N2 mixture (purple area in membrane refers to restrained layer)
| 参数 | 气体 | 模拟值 | 现有文献结果 [ |
|---|---|---|---|
| S/(mmol/g) | CO2 | 4.00 | — |
| N2 | 0.30 | — | |
| 13.33 | — | ||
| P/Barrer | CO2 | 22546.09 | 4000±100 |
| N2 | 1094.01 | 220±8 | |
| 20.61 |
Table 1 Results of gas separation through CANAL-Me-S5F membrane
| 参数 | 气体 | 模拟值 | 现有文献结果 [ |
|---|---|---|---|
| S/(mmol/g) | CO2 | 4.00 | — |
| N2 | 0.30 | — | |
| 13.33 | — | ||
| P/Barrer | CO2 | 22546.09 | 4000±100 |
| N2 | 1094.01 | 220±8 | |
| 20.61 |
| 1 | Kamio E, Yoshioka T, Matsuyama H. Recent advances in carbon dioxide separation membranes: a review[J]. Journal of Chemical Engineering of Japan, 2023, 56(1): 2222000. |
| 2 | Bredesen R, Kumakiri I, Peters T. CO2 capture with membrane systems[M]//Drioli E, Giorno L. Membrane Operations. Weinheim: Wiley-VCH, 2009: 195-220. |
| 3 | Wang S F, Li X Q, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
| 4 | Kamiya Y, Naito Y, Mizoguchi K, et al. Thermodynamic interactions in rubbery polymer/gas systems[J]. Journal of Polymer Science Part B: Polymer Physics, 1997, 35(7): 1049-1053. |
| 5 | Dai Z D, Deng L Y. Membranes for CO2 capture and separation: progress in research and development for industrial applications[J]. Separation and Purification Technology, 2024, 335: 126022. |
| 6 | Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2 capture technology—the U.S. Department of Energy's carbon sequestration program[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 9-20. |
| 7 | Merkel T C, Lin H Q, Wei X T, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139. |
| 8 | Keairns D, Newby R, Shah V. Current and future technologies for power generation with post-combustion carbon capture[R]. United States, 2012. |
| 9 | Sanders D F, Smith Z P, Guo R L, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review[J]. Polymer, 2013, 54(18): 4729-4761. |
| 10 | Lee Y C, Chuah C Y, Lee J, et al. Effective functionalization of porous polymer fillers to enhance CO2/N2 separation performance of mixed-matrix membranes[J]. Journal of Membrane Science, 2022, 647: 120309. |
| 11 | Wang Y H, Zhou Y, Zhang X R, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189. |
| 12 | Li X X, Jiao C L, Zhang X Q, et al. A general strategy for fabricating polymer/nanofiller composite membranes with enhanced CO2/N2 separation performance[J]. Journal of Cleaner Production, 2022, 350: 131468. |
| 13 | Liu J Y, Hou X D, Park H B, et al. High-performance polymers for membrane CO2/N2 separation[J]. Chemistry, 2016, 22(45): 15980-15990. |
| 14 | Ding X L, Wang W J, Cheng X Y, et al. Composite membranes based on ether oxygen-rich polyimide with superior CO2/N2 separation properties prepared by interfacial polymerization[J]. Journal of Membrane Science, 2024, 693: 122355. |
| 15 | Zhao B W, Wong J W, Liang C Z, et al. Inner-selective polyethersulfone-polydimethylsiloxane (PES-PDMS) thin film composite hollow fiber membrane for CO2/N2 separation at high pressures[J]. Separation and Purification Technology, 2023, 323: 124439. |
| 16 | Pang R Z, Chen K K, Han Y, et al. Highly permeable polyethersulfone substrates with bicontinuous structure for composite membranes in CO2/N2 separation[J]. Journal of Membrane Science, 2020, 612: 118443. |
| 17 | Sandru M, Sandru E M, Ingram W F, et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes[J]. Science, 2022, 376(6588): 90-94. |
| 18 | Xu X Z, Wang J J, Zhou A W, et al. High-efficiency CO2 separation using hybrid LDH-polymer membranes[J]. Nature Communications, 2021, 12(1): 3069. |
| 19 | Barnett J W, Bilchak C R, Wang Y W, et al. Designing exceptional gas-separation polymer membranes using machine learning[J]. Science Advances, 2020, 6(20): eaaz4301. |
| 20 | Chen L D, Su P C, Liu J D, et al. Post-synthesis amination of polymer of intrinsic microporosity membranes for CO2 separation[J]. AIChE Journal, 2023, 69(6): e18050. |
| 21 | McKeown N B. The structure-property relationships of polymers of intrinsic microporosity (PIMs)[J]. Current Opinion in Chemical Engineering, 2022, 36: 100785. |
| 22 | Lai H W H, Benedetti F M, Jin Z X, et al. Tuning the molecular weights, chain packing, and gas-transport properties of CANAL ladder polymers by short alkyl substitutions[J]. Macromolecules, 2019, 52(16): 6294-6302. |
| 23 | Lai H W H, Benedetti F M, Ahn J M, et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations[J]. Science, 2022, 375(6587): 1390-1392. |
| 24 | Robinson A M, Xia Y. Regioisomeric spirobifluorene CANAL ladder polymers and their gas separation performance[J]. ACS Macro Letters, 2024: 118-123. |
| 25 | Ma X H, Lai H W H, Wang Y G, et al. Facile synthesis and study of microporous catalytic arene-norbornene annulation-Tröger’s base ladder polymers for membrane air separation[J]. ACS Macro Letters, 2020, 9(5): 680-685. |
| 26 | Hazazi K, Wang Y G, Srivatsa Bettahalli N M, et al. Catalytic arene-norbornene annulation (CANAL) ladder polymer derived carbon membranes with unparalleled hydrogen/carbon dioxide size-sieving capability[J]. Journal of Membrane Science, 2022, 654: 120548. |
| 27 | Xu Q B, Xin B R, Wei J, et al. Tröger’s base polymeric membranes for CO2 separation: a review[J]. Journal of Materials Chemistry A, 2023, 11(29): 15600-15634. |
| 28 | Yuan P, Zhang M R, Pang Y Y, et al. Intrinsically microporous polyimides from norbornyl bis-benzocyclobutene-containing diamines and rigid dianhydrides for membrane-based gas separation[J]. ACS Applied Polymer Materials, 2023, 5(2): 1420-1429. |
| 29 | Liu B, Smit B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8515-8522. |
| 30 | Meng X S, Fang T M, Zhou G H, et al. Molecular simulation study on CO2 separation performance of GO/ionic liquid membrane[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123360. |
| 31 | Xu P, Zhang X C, Zhao L L, et al. Prominently improved CO2/N2 separation efficiency by ultrathin-ionic-liquid-covered MXene membrane[J]. Separation and Purification Technology, 2023, 311: 123296. |
| 32 | Neyertz S, Brown D, Salimi S, et al. Molecular characterization of membrane gas separation under very high temperatures and pressure: single-and mixed-gas CO2/CH4 and CO2/N2 permselectivities in hybrid networks[J]. Membranes, 2022, 12(5): 526. |
| 33 | Apriliyanto Y B, Faginas-Lago N, Evangelisti S, et al. Multilayer graphtriyne membranes for separation and storage of CO2: molecular dynamics simulations of post-combustion model mixtures[J]. Molecules, 2022, 27(18): 5958. |
| 34 | Kojabad M E, Babaluo A, Tavakoli A. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: molecular simulation and experimental study[J]. Separation and Purification Technology, 2021, 266: 118494. |
| 35 | Ozcan A, Semino R, Maurin G, et al. Modeling of gas transport through polymer/MOF interfaces: a microsecond-scale concentration gradient-driven molecular dynamics study[J]. Chemistry of Materials, 2020, 32(3): 1288-1296. |
| 36 | Ozcan A, Fan D, Datta S J, et al. Tuning MOF/polymer interfacial pore geometry in mixed matrix membrane for upgrading CO2 separation performance[J]. Science Advances, 2024, 10(28): eadk5846. |
| 37 | Asif K, Lock S S M, Ali Ammar Taqvi S, et al. A molecular simulation study on amine-functionalized silica/polysulfone mixed matrix membrane for mixed gas separation[J]. Chemosphere, 2023, 311: 136936. |
| 38 | Daglar H, Keskin S. Combining machine learning and molecular simulations to unlock gas separation potentials of MOF membranes and MOF/polymer MMMs[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32134-32148. |
| 39 | Heuchel M, Fritsch D, Budd P M, et al. Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science, 2008, 318(1/2): 84-99. |
| 40 | Fang W J, Zhang L L, Jiang J W. Polymers of intrinsic microporosity for gas permeation: a molecular simulation study[J]. Molecular Simulation, 2010, 36(12): 992-1003. |
| 41 | Zhou J H, Zhu X, Hu J, et al. Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane[J]. Physical Chemistry Chemical Physics, 2014, 16(13): 6075-6083. |
| 42 | Shi Q, Zhang K, Lu R F, et al. Water desalination and biofuel dehydration through a thin membrane of polymer of intrinsic microporosity: atomistic simulation study[J]. Journal of Membrane Science, 2018, 545: 49-56. |
| 43 | Cabrales-Navarro F A, Gómez-Ballesteros J L, Balbuena P B. Molecular dynamics simulations of metal-organic frameworks as membranes for gas mixtures separation[J]. Journal of Membrane Science, 2013, 428: 241-250. |
| 44 | Zhang N, Luo Y, Li Z W, et al. Molecular investigation on the mechanism of permselective transport of CO2/N2 mixture through graphene slit[J]. Separation and Purification Technology, 2022, 282: 119986. |
| 45 | Li W, Zheng X, Dong Z H, et al. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes[J]. The Journal of Physical Chemistry C, 2016, 120(45): 26061-26066. |
| 46 | Shan M X, Xue Q Z, Jing N N, et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes[J]. Nanoscale, 2012, 4(17): 5477-5482. |
| 47 | Liu J, Jiang J W. Molecular design of microporous polymer membranes for the upgrading of natural gas[J]. The Journal of Physical Chemistry C, 2019, 123(11): 6607-6615. |
| 48 | Tong M M, Yang Q Y, Ma Q T, et al. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study[J]. Journal of Materials Chemistry A, 2016, 4(1): 124-131. |
| 49 | Abraham M J, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25. |
| 50 | Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. |
| 51 | Zhao Z Y, Liu J, Jiang J W. Dipeptide membranes for CO2 separation: a molecular simulation study[J]. Fluid Phase Equilibria, 2020, 515: 112570. |
| 52 | Kong X, Liu J. An atomistic simulation study on POC/PIM mixed-matrix membranes for gas separation[J]. The Journal of Physical Chemistry C, 2019, 123(24): 15113-15121. |
| 53 | Harris J G, Yung K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry, 1995, 99(31): 12021-12024. |
| 54 | Nosé S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 1984, 52(2): 255-268. |
| 55 | Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. |
| 56 | Golzar K, Modarress H, Amjad-Iranagh S. Separation of gases by using pristine, composite and nanocomposite polymeric membranes: a molecular dynamics simulation study[J]. Journal of Membrane Science, 2017, 539: 238-256. |
| 57 | Low Z X, Budd P M, McKeown N B, et al. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911. |
| 58 | Lin H Q, Van Wagner E, Freeman B D, et al. Plasticization-enhanced hydrogen purification using polymeric membranes[J]. Science, 2006, 311(5761): 639-642. |
| 59 | Tiwari R R, Jin J Y, Freeman B D, et al. Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science, 2017, 537: 362-371. |
| 60 | Zhang L L, Xiao Y C, Chung T S, et al. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: a combination of experiment and simulation study[J]. Polymer, 2010, 51(19): 4439-4447. |
| 61 | 李辰鑫, 潘艳秋, 何流, 等. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
| Li C X, Pan Y Q, He L, et al. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation[J]. CIESC Journal, 2023, 74(5): 2057-2066. |
| [1] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [2] | Renze SHI, Qiuyan DING, Zhenjun YUAN, Jian NA, Jianhua LIU, Shuhu GUO, Xiong ZHAO, Hong LI, Xin GAO. Study on the purification technology of 4N electronic-grade diethoxymethylsilane [J]. CIESC Journal, 2025, 76(5): 2186-2197. |
| [3] | Minggang GUO, Xiaohang YANG, Yan DAI, Panpan MI, Shixin MA, Gaohong HE, Wu XIAO, Fujun CUI. Optimal design of integration process for helium extraction from helium-poor pipeline natural gas with diversified products [J]. CIESC Journal, 2025, 76(5): 2251-2261. |
| [4] | Liao HE, Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on aromatic hydrocarbons separation from petroleum hydrocarbons [J]. CIESC Journal, 2025, 76(5): 1909-1926. |
| [5] | Zehai XU, Chao LIU, Guoliang ZHANG. Hydrophobic pervaporation membranes on polymer substrate for solvent recovery [J]. CIESC Journal, 2025, 76(5): 2055-2069. |
| [6] | Bingbing GAO, Nuo XU, Yunxiang BAI, Chunfang ZHANG, Yongqiang YANG, Liangliang DONG. Polymeric membranes for helium separation [J]. CIESC Journal, 2025, 76(5): 2119-2135. |
| [7] | Jiashun LI, Wang LI, Zuzeng QIN, Tongming SU, Xinling XIE, Hongbing JI. Preparation of polyimide-reinforced lignocellulosic nanofibril aerogel and its oil-water separation performance [J]. CIESC Journal, 2025, 76(5): 2169-2185. |
| [8] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [9] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| [10] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [11] | Yanan YANG, Shengran CHANG, Songlin XUE, Jianming PAN, Weihong XING. Progress of research on photo- and electric-driven to promote uranium and lithium extraction from seawater [J]. CIESC Journal, 2025, 76(5): 1927-1942. |
| [12] | Zibo YANG, Youfa WANG, Hansong YUE, Shuangjie YUAN, Fujiang GENG, Qingqing LI, De AO, Bin LI, Mao YE, Zhenjie GU, Zhihua QIAO. Recent progress of MOF glasses based gas separation membrane [J]. CIESC Journal, 2025, 76(5): 2158-2168. |
| [13] | Di ZHU, Shoujian GAO, Wangxi FANG, Jian JIN. Construction of PES membranes with sponge-like pores and stable super-hydrophilicity through vapor-induced phase separation for oil-in-water emulsion separation [J]. CIESC Journal, 2025, 76(5): 2397-2409. |
| [14] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [15] | Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers [J]. CIESC Journal, 2025, 76(5): 2101-2118. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||