CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2348-2357.DOI: 10.11949/0438-1157.20241220

• Separation engineering • Previous Articles     Next Articles

Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane

Zijuan LI(), Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU(), Faquan YU()   

  1. School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology, Wuhan 430205,Hubei,China
  • Received:2024-10-31 Revised:2024-12-03 Online:2025-06-13 Published:2025-05-25
  • Contact: Jie LIU, Faquan YU

分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理

李紫鹃(), 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷(), 喻发全()   

  1. 武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室,新型反应器与绿色化学工艺湖北省重点实验室,湖北省高端精细化学品工程技术研究中心,湖北 武汉 430205
  • 通讯作者: 刘捷,喻发全
  • 作者简介:李紫鹃(2002—),女,硕士研究生,zijuan_wit@163.com
  • 基金资助:
    国家自然科学基金项目(22078251);武汉工程大学研究生教育创新基金项目(CX2024272)

Abstract:

Membrane separation is an efficient and energy-saving CO2 separation technology. Intrinsic microporous ladder polymers are regarded as the superior materials for CO2 separation technology due to their high porosity, high selectivity and stable structure. In this work, based on molecular dynamics simulation, a 3D-contorted CANAL ladder polymer membrane (named CANAL-Me-S5F membrane) is constructed, and the sorption as well as permeation performance of CO2/N2 mixture are investigated. To fully consider the flexibility of polymer membrane, most polymer chains can freely move during the simulation. The results show that the adsorption quantity of CO2 in the membrane (4.00 mmol/g) is significantly larger than that of N2 (0.30 mmol/g), which is mainly caused by the stronger interaction between CO2 and membrane. The permeabilities of CO2 and N2 through the CANAL-Me-S5F membrane are 22546.09 Barrer and 1094.01 Barrer, respectively. The permselectivity αP(CO2/N2) (20.61) is in good agreement with reported experiment. The CANAL-Me-S5F membrane exhibits high permeability selectivity for CO2 molecules, mainly due to the high solubility (i.e., preferential adsorption) of CO2 in the membrane material. The research results provide theoretical support for the design and development of new polymer membranes for gas separati on.

Key words: ladder polymers of intrinsic microporosity, CO2/N2 separation, membrane, separation, molecular simulation

摘要:

膜分离技术是一种高效、节能的CO2分离技术。固有微孔梯形聚合物因其高孔隙率、高选择性、结构稳定等优点被视作CO2分离技术的优势材料。通过分子动力学模拟方法构建了三维扭曲催化芳烃-降冰片烯环化(CANAL)梯形聚合物膜(CANAL-Me-S5F膜)对CO2/N2混合气体的吸附和渗透模型,并对其CO2/N2分离性能进行研究。为了充分考虑聚合物链的柔性特征,在计算过程中,聚合物膜的大部分结构保持自由运动状态。结果表明,CO2在CANAL-Me-S5F膜中的吸附量(4.00 mmol/g)明显大于N2(0.30 mmol/g),这是由CANAL-Me-S5F与CO2分子之间更强的相互吸引作用决定的。CANAL-Me-S5F膜中CO2和N2的渗透率分别为22546.09 Barrer和1094.01 Barrer,渗透选择性αP(CO2/N2)为20.61,该渗透选择性与已报道的实验数值十分吻合。CANAL-Me-S5F膜对CO2分子呈现出较高的渗透选择性,主要是由CO2在膜材料中的高溶解度(即优先吸附)主导的。研究结果可从微观层面为新型气体分离聚合物膜的设计与开发提供理论支撑。

关键词: 固有梯形聚合物, CO2/N2分离, 膜, 分离, 分子模拟

CLC Number: