CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 1927-1942.DOI: 10.11949/0438-1157.20241207
• Reviews and monographs • Previous Articles
Yanan YANG(
), Shengran CHANG, Songlin XUE, Jianming PAN(
), Weihong XING(
)
Received:2024-10-30
Revised:2025-01-10
Online:2025-06-13
Published:2025-05-25
Contact:
Jianming PAN, Weihong XING
通讯作者:
潘建明,邢卫红
作者简介:杨雅南(2001—),女,硕士研究生,2222312083@stmail.ujs.edu.cn
基金资助:CLC Number:
Yanan YANG, Shengran CHANG, Songlin XUE, Jianming PAN, Weihong XING. Progress of research on photo- and electric-driven to promote uranium and lithium extraction from seawater[J]. CIESC Journal, 2025, 76(5): 1927-1942.
杨雅南, 常胜然, 薛松林, 潘建明, 邢卫红. 基于光、电驱动促进海水中铀和锂提取的研究进展[J]. 化工学报, 2025, 76(5): 1927-1942.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Schematic diagram of solvent-assisted ligand-bound uranium extraction MOF and mechanistic diagram of photocatalytic reduction of uranium by PN-PCN-222[47]
Fig.6 A schematic diagram of the series dehydration process for uranium extraction and enrichment in electrodialysis[73]Cout—concentrate outlet; Cin—concentrate inlet; Dout—diluted effluent; Din—diluent inlet
| 类型 | 分类 | 材料 | 铀吸附量/(mg·g-1) | 铀还原效率/ 铀富集效率 | 溶液形式 |
|---|---|---|---|---|---|
| 基于光驱动 | 元素掺杂 | Sn-In2S3微球[ | 约112.83 | — | — |
| g-C3N4(S/P/B)[ | — | — | — | ||
| 界面修饰 | PN-PCN-222[ | 1289.3 | 96.7% | 模拟海水 | |
| TTh-COF-AO[ | 10.24 | — | 自然海水 | ||
TpBD-X[ (X = —OH、—NH、—OCH、—NO、—SOH) | — | 73.11% (max) | 模拟海水 | ||
| 缺陷工程及异质结引入 | ZnFe2O4/g-C3N4 Z-scheme异质结[ | 1892.4 | 94.62% | 模拟海水 | |
| AO-C3N4[ | 850 μg·g-1 | 94.2% | 自然海水 | ||
| CN550[ | 1057.3 (明黄色变至完全透明) | — | 模拟海水/ 自然海水 | ||
| 基于电驱动 | 电容去离子 | WO3/C复合电极[ | 449.9 | 71% | 模拟海水 |
In-N x -C-R[ (R为偕胺肟基团) | 12.7 | >90% | 自然海水 | ||
| 电沉积 | Fe-N x -C-R[ | 1.2 | — | 自然海水 | |
| MPSOF[ | 1.21 | — | 自然海水 | ||
| TFPM-PDAN-AO[ | 12.8 (20 d) | 98.2% | 自然海水 | ||
| 电渗析 | CJMC-5阳离子交换膜[ | — | >80% | 模拟海水 | |
| PAO交换膜[ | — | 30%(与未掺杂PAO相比) | 模拟海水 |
Table 1 Recent advances based on photo/electric-driven methods for uranium extraction from seawater
| 类型 | 分类 | 材料 | 铀吸附量/(mg·g-1) | 铀还原效率/ 铀富集效率 | 溶液形式 |
|---|---|---|---|---|---|
| 基于光驱动 | 元素掺杂 | Sn-In2S3微球[ | 约112.83 | — | — |
| g-C3N4(S/P/B)[ | — | — | — | ||
| 界面修饰 | PN-PCN-222[ | 1289.3 | 96.7% | 模拟海水 | |
| TTh-COF-AO[ | 10.24 | — | 自然海水 | ||
TpBD-X[ (X = —OH、—NH、—OCH、—NO、—SOH) | — | 73.11% (max) | 模拟海水 | ||
| 缺陷工程及异质结引入 | ZnFe2O4/g-C3N4 Z-scheme异质结[ | 1892.4 | 94.62% | 模拟海水 | |
| AO-C3N4[ | 850 μg·g-1 | 94.2% | 自然海水 | ||
| CN550[ | 1057.3 (明黄色变至完全透明) | — | 模拟海水/ 自然海水 | ||
| 基于电驱动 | 电容去离子 | WO3/C复合电极[ | 449.9 | 71% | 模拟海水 |
In-N x -C-R[ (R为偕胺肟基团) | 12.7 | >90% | 自然海水 | ||
| 电沉积 | Fe-N x -C-R[ | 1.2 | — | 自然海水 | |
| MPSOF[ | 1.21 | — | 自然海水 | ||
| TFPM-PDAN-AO[ | 12.8 (20 d) | 98.2% | 自然海水 | ||
| 电渗析 | CJMC-5阳离子交换膜[ | — | >80% | 模拟海水 | |
| PAO交换膜[ | — | 30%(与未掺杂PAO相比) | 模拟海水 |
| 方法 | 优点 | 不足 | 研究重点 |
|---|---|---|---|
| 电容去离子 | 能耗低;操作简便;电极使用寿命长; 无其他化学试剂的引入 | 电极易堵塞;电解质系统复杂 | 提高电极材料的比表面积和电荷存储能力; 有效回收和处理吸附的铀离子 |
| 电沉积 | 可直接获取固体形式的铀;出售固体铀可降低运营成本;无须复杂的化学处理 | 存在副反应,会产生二次废物 | 提高电沉积效率和选择性;防止其他离子的共沉积 |
| 电渗析 | 引入离子交换膜;可实现连续操作 | 膜易被污染或堵塞;维修需要投入较高成本 | 提高离子交换膜的耐久性以降低成本; 提高能源效率 |
Table 2 Comparison of three types of electrically driven seawater-based uranium extraction
| 方法 | 优点 | 不足 | 研究重点 |
|---|---|---|---|
| 电容去离子 | 能耗低;操作简便;电极使用寿命长; 无其他化学试剂的引入 | 电极易堵塞;电解质系统复杂 | 提高电极材料的比表面积和电荷存储能力; 有效回收和处理吸附的铀离子 |
| 电沉积 | 可直接获取固体形式的铀;出售固体铀可降低运营成本;无须复杂的化学处理 | 存在副反应,会产生二次废物 | 提高电沉积效率和选择性;防止其他离子的共沉积 |
| 电渗析 | 引入离子交换膜;可实现连续操作 | 膜易被污染或堵塞;维修需要投入较高成本 | 提高离子交换膜的耐久性以降低成本; 提高能源效率 |
| 类型 | 分类 | 材料 | 锂吸附量/(mg·g-1) | 锂吸附效率 | 溶液形式 |
|---|---|---|---|---|---|
| 基于光驱动 | 光电化学 | InGaP/GaAs/Ge光电极[ | 783.56 | — | 自然海水 |
| 光热 | PIP[ | 1289.3 | 308.6 mg·m-2·d-1 | 自然海水 | |
| 改性复合材料 | 聚丙烯/聚乙烯芯鞘纤维毛毡[ | 约520 mg·m-2 | 9.368 mg·g-1·h-1 | 自然海水 | |
| 基于电驱动 | 电渗析 | LLTO膜[ | 9013.43 | 71% | 模拟海水 |
| M-GA/PEI膜[ | 12.7 | — | 自然海水 | ||
| 15CE/PEI-PDA-CR671膜[ | — | 90% | 模拟海水 | ||
| 电化学插层 | TiO2包覆LiFePO4电极[ | — | 94.3% ± 4.0% | 模拟海水 | |
| pD包覆LiFePO4电极[ | — | — | 模拟海水 | ||
| MnO2包覆LiFePO4电极[ | 20.6 | — | 自然海水 |
Table 3 Recent advances based on photo/electric-driven methods for lithium extraction from seawater
| 类型 | 分类 | 材料 | 锂吸附量/(mg·g-1) | 锂吸附效率 | 溶液形式 |
|---|---|---|---|---|---|
| 基于光驱动 | 光电化学 | InGaP/GaAs/Ge光电极[ | 783.56 | — | 自然海水 |
| 光热 | PIP[ | 1289.3 | 308.6 mg·m-2·d-1 | 自然海水 | |
| 改性复合材料 | 聚丙烯/聚乙烯芯鞘纤维毛毡[ | 约520 mg·m-2 | 9.368 mg·g-1·h-1 | 自然海水 | |
| 基于电驱动 | 电渗析 | LLTO膜[ | 9013.43 | 71% | 模拟海水 |
| M-GA/PEI膜[ | 12.7 | — | 自然海水 | ||
| 15CE/PEI-PDA-CR671膜[ | — | 90% | 模拟海水 | ||
| 电化学插层 | TiO2包覆LiFePO4电极[ | — | 94.3% ± 4.0% | 模拟海水 | |
| pD包覆LiFePO4电极[ | — | — | 模拟海水 | ||
| MnO2包覆LiFePO4电极[ | 20.6 | — | 自然海水 |
| 类型 | 材料 | 外加电压/电流 | 能耗/成本估算 |
|---|---|---|---|
| 基于电驱动提铀 | WO3/C复合电极[ | 1.2 V(恒定电压) | — |
In-N x -C-R[ (R为偕胺肟基团) | -5~0 V(交流电压) | 约806 USD·g-1 | |
| MPSOF[ | -3.5 V(交流电压) | — | |
| TFPM-PDAN-AO[ | -6~-1 V(交流电压) | — | |
| CJMC-5阳离子交换膜[ | 4 mA·cm-2(恒定电流) | 101.78 USD·m-3 | |
| Fe@PDACN[ | ≤-1.5 V(交流电压) | 3.22×10-2 USD·kg-1 | |
| 基于电驱动提锂 | LLTO膜[ | 0.6 V(恒定电压) | 46011.16 J |
| M-GA/PEI膜[ | — | 第一级 0.029~0.039 kWh·mol-1 第二级 0.011~0.014 kWh·mol-1 | |
| 15CE/PEI-PDA-CR671膜[ | 15.9 mA·cm-2 (恒定电流) | — | |
| TiO2包覆LiFePO4电极[ | 3.4 V (恒定电压) | — | |
| pD包覆LiFePO4电极[ | 1.3 mA (恒定电流) | — | |
| MnO2包覆LiFePO4电极[ | 0.5 mA (恒定电流) | 7.2 Wh |
Table 4 Energy and cost estimation of lithium and uranium extraction based on electrically-driven from seawater
| 类型 | 材料 | 外加电压/电流 | 能耗/成本估算 |
|---|---|---|---|
| 基于电驱动提铀 | WO3/C复合电极[ | 1.2 V(恒定电压) | — |
In-N x -C-R[ (R为偕胺肟基团) | -5~0 V(交流电压) | 约806 USD·g-1 | |
| MPSOF[ | -3.5 V(交流电压) | — | |
| TFPM-PDAN-AO[ | -6~-1 V(交流电压) | — | |
| CJMC-5阳离子交换膜[ | 4 mA·cm-2(恒定电流) | 101.78 USD·m-3 | |
| Fe@PDACN[ | ≤-1.5 V(交流电压) | 3.22×10-2 USD·kg-1 | |
| 基于电驱动提锂 | LLTO膜[ | 0.6 V(恒定电压) | 46011.16 J |
| M-GA/PEI膜[ | — | 第一级 0.029~0.039 kWh·mol-1 第二级 0.011~0.014 kWh·mol-1 | |
| 15CE/PEI-PDA-CR671膜[ | 15.9 mA·cm-2 (恒定电流) | — | |
| TiO2包覆LiFePO4电极[ | 3.4 V (恒定电压) | — | |
| pD包覆LiFePO4电极[ | 1.3 mA (恒定电流) | — | |
| MnO2包覆LiFePO4电极[ | 0.5 mA (恒定电流) | 7.2 Wh |
| 1 | Tian G X, Teat S J, Rao L F. Thermodynamic studies of U(Ⅵ) complexation with glutardiamidoxime for sequestration of uranium from seawater[J]. Dalton Transaction, 2013, 42(16): 5690-5696. |
| 2 | Zeng M, Liu Y X, Ouyang S J, et al. Nuclear energy in the post-fukushima era: research on the developments of the Chinese and worldwide nuclear power industries[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 147-156. |
| 3 | Yang H, Liu Y F, Chen Z S, et al. Emerging technologies for uranium extraction from seawater[J]. Science China Chemistry, 2022, 65(12): 2335-2337. |
| 4 | Kim J, Tsouris C, Oyola Y, et al. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6076-6083. |
| 5 | Abney C W, Mayes R T, Saito T, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23): 13935-14013. |
| 6 | Asiabi H, Yamini Y, Shamsayei M. Highly efficient capture and recovery of uranium by reusable layered double hydroxide intercalated with 2-mercaptoethanesulfonate[J]. Chemical Engineering Journal, 2018, 337: 609-615. |
| 7 | Chen L, Bai Z L, Zhu L, et al. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32446-32451. |
| 8 | Guo L C, Yang Y T, Gong L L, et al. Innovative conversion strategy for wastewater with one-pot uranium extraction and valuable chemical production by a smart COF photocatalyst[J]. Advanced Functional Materials, 2024, 34(29): 2400588. |
| 9 | Hu E M, Chen Q, Gao Q, et al. Cyano-functionalized graphitic carbon nitride with adsorption and photoreduction isosite achieving efficient uranium extraction from seawater[J]. Advanced Functional Materials, 2024, 34(19): 2312215. |
| 10 | Jiao R R, Zhou H Y, Wang D, et al. Uranium electrolytic deposition with regenerable Se2- active sites at low cell voltage[J]. Chemical Engineering Journal, 2024, 499: 156227. |
| 11 | Gao W, Long Y T, Qing Y F, et al. A novel strategy for efficient uranium extraction and energy storage: uranium extraction cell[J]. Separation and Purification Technology, 2024, 339: 126723. |
| 12 | Yu Q H, Yuan Y H, Feng L J, et al. Spidroin-inspired, high-strength, loofah-shaped protein fiber for capturing uranium from seawater[J]. Angewandte Chemie International Edition, 2020, 59(37): 15997-16001. |
| 13 | Song Y P, Zhu C J, Sun Q, et al. Nanospace decoration with uranyl-specific "hooks" for selective uranium extraction from seawater with ultrahigh enrichment index[J]. ACS Central Science, 2021, 7(10): 1650-1656. |
| 14 | Li Y, Zheng Y J, Ahamd Z, et al. Strategies for designing highly efficient adsorbents to capture uranium from seawater[J]. Coordination Chemistry Reviews, 2023, 491: 215234. |
| 15 | Liu S Q, Tao B B, Zuo B, et al. Function-oriented design principles for adsorbent materials of uranium extraction from seawater[J]. Chemical Engineering Journal, 2024, 500: 156783. |
| 16 | Wu Y, Xie Y H, Liu X L, et al. Functional nanomaterials for selective uranium recovery from seawater: material design, extraction properties and mechanisms[J]. Coordination Chemistry Reviews, 2023, 483: 215097. |
| 17 | Li W D, Erickson E M, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nature Energy, 2020, 5: 26-34. |
| 18 | Zhao Y, Wu M Y, Guo Y, et al. Metal-organic framework based membranes for selective separation of target ions[J]. Journal of Membrane Science, 2021, 634: 119407. |
| 19 | Wang R H, Zhang Y H, Sun K W, et al. Emerging green technologies for recovery and reuse of spent lithium-ion batteries-a review[J]. Journal of Materials Chemistry A, 2022, 10(33): 17053-17076. |
| 20 | 李彦乐, 刘宜林, 霍俊杰, 等. 层状结构铝系吸附剂在盐湖提锂领域的研究[J]. 化工学报, 2023, 74(12): 4777-4791. |
| Li Y L, Liu Y L, Huo J J, et al. Research progress of aluminum adsorbents in lithium extraction from salt lakes[J]. CIESC Journal, 2023, 74(12): 4777-4791. | |
| 21 | Paranthaman M P, Li L, Luo J Q, et al. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents[J]. Environmental Science & Technology, 2017, 51(22): 13481-13486. |
| 22 | Yu J T, Zhu J, Luo G L, et al. 3D-printed titanium-based ionic sieve monolithic adsorbent for selective lithium recovery from salt lakes[J]. Desalination, 2023, 560: 116651. |
| 23 | Chen S Q, Chen Z S, Wei Z W, et al. Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water[J]. Chemical Engineering Journal, 2021, 410: 128320. |
| 24 | Roobavannan S, Choo Y, Truong D Q, et al. Seawater lithium mining by zeolitic imidazolate framework encapsulated manganese oxide ion sieve nanomaterial[J]. Chemical Engineering Journal, 2023, 474: 145957. |
| 25 | Tang L, Huang S D, Wang Y, et al. Highly efficient, stable, and recyclable hydrogen manganese oxide/cellulose film for the extraction of lithium from seawater[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9775-9781. |
| 26 | Peng Q, Wang R Y, Zhao Z L, et al. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane[J]. Nature Communications, 2024, 15(1): 2505. |
| 27 | Steven Kurniawan Y, Rao Sathuluri R, Ohto K, et al. A rapid and efficient lithium-ion recovery from seawater with tripropyl-monoacetic acid calix[4]arene derivative employing droplet-based microreactor system[J]. Separation and Purification Technology, 2019, 211: 925-934. |
| 28 | Harvianto G R, Kim S H, Ju C S. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater[J]. Rare Metals, 2016, 35(12): 948-953. |
| 29 | Paredes C, Rodríguez de San Miguel E. Selective lithium extraction and concentration from diluted alkaline aqueous media by a polymer inclusion membrane and application to seawater[J]. Desalination, 2020, 487: 114500. |
| 30 | 石成龙, 贾永忠, 景燕. 离子液体-磷酸三丁酯体系分离盐湖卤水镁锂[J]. 化工学报, 2015, 66(S1): 253-259. |
| Shi C L, Jia Y Z, Jing Y. Lithium and magnesium separation from salt lake brine by ionic liquids containing tributyl phosphate[J]. CIESC Journal, 2015, 66(S1): 253-259. | |
| 31 | Abdulazeez I, Baig N, Salhi B, et al. Electrochemical behavior of novel electroactive LaTi4Mn3O12/polyaniline composite for Li+-ion recovery from brine with high selectivity[J]. Separation and Purification Technology, 2023, 309: 122997. |
| 32 | Yang S X, Zhang F, Ding H P, et al. Lithium metal extraction from seawater[J]. Joule, 2018, 2(9): 1648-1651. |
| 33 | Kim J S, Lee Y H, Choi S, et al. An electrochemical cell for selective lithium capture from seawater[J]. Environmental Science & Technology, 2015, 49(16): 9415-9422. |
| 34 | Ma H Y, Xia Y, Wang Z Y, et al. Dual-channel-ion conductor membrane for low-energy lithium extraction[J]. Environmental Science & Technology, 2023, 57(45): 17246-17255. |
| 35 | Hu H S, Xiong L, Shi Z X, et al. Study on lithium extraction from natural brine without additional energy consumption by photocatalytic technology[J]. Sustainable Materials and Technologies, 2024, 41: e01108. |
| 36 | Zhang S X, Wei X, Cao X, et al. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine[J]. Nature Communications, 2024, 15(1): 238. |
| 37 | Song Y, Fang S Q, Xu N, et al. Solar transpiration-powered lithium extraction and storage[J]. Science, 2024, 385(6716): 1444-1449. |
| 38 | Lim Y J, Goh K, Goto A, et al. Uranium and lithium extraction from seawater: challenges and opportunities for a sustainable energy future[J]. Journal of Materials Chemistry A, 2023, 11(42): 22551-22589. |
| 39 | Yu S J, Tang H, Zhang D, et al. MXenes as emerging nanomaterials in water purification and environmental remediation[J]. Science of the Total Environment, 2022, 811: 152280. |
| 40 | Zhang Y F, Zhu M Y, Zhang S, et al. Highly efficient removal of U(Ⅵ) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation[J]. Applied Catalysis B: Environmental, 2020, 279: 119390. |
| 41 | Sarsfield M J, Helliwell M. Extending the chemistry of the uranyl ion: Lewis acid coordination to a U=O oxygen[J]. Journal of the American Chemical Society, 2004, 126(4): 1036-1037. |
| 42 | Amadelli R, Maldotti A, Sostero S, et al. Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(19): 3267-3273. |
| 43 | Li P, Wang J J, Wang Y, et al. Photoconversion of U(Ⅵ) by TiO2: an efficient strategy for seawater uranium extraction[J]. Chemical Engineering Journal, 2019, 365: 231-241. |
| 44 | Lu C H, Zhang P, Jiang S J, et al. Photocatalytic reduction elimination of U O 2 2 + pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst[J]. Applied Catalysis B: Environmental, 2017, 200: 378-385. |
| 45 | Lu C H, Chen R Y, Wu X, et al. Boron doped g-C3N4 with enhanced photocatalytic U O 2 2 + reduction performance[J]. Applied Surface Science, 2016, 360: 1016-1022. |
| 46 | Wu X, Jiang S J, Song S Q, et al. Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of U O 2 2 + [J]. Applied Surface Science, 2018, 430: 371-379. |
| 47 | Li H, Zhai F W, Gui D X, et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks[J]. Applied Catalysis B: Environmental, 2019, 254: 47-54. |
| 48 | Yu F T, Li C Y, Li W R, et al. π-skeleton tailoring of olefin-linked covalent organic frameworks achieving low exciton binding energy for photo-enhanced uranium extraction from seawater[J]. Advanced Functional Materials, 2024, 34(1): 2307230. |
| 49 | Zhong X, Ling Q, Kuang P L, et al. Modified side-chain COFs construct built-in electric fields with low exciton binding energy for photo-reduced uranium[J]. Chemical Engineering Journal, 2024, 483: 149339. |
| 50 | Chen T, Li M X, Zhou L, et al. Harmonizing the energy band between adsorbent and semiconductor enables efficient uranium extraction[J]. Chemical Engineering Journal, 2021, 420: 127645. |
| 51 | Chen T, Liu B, Li M X, et al. Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering[J]. Chemical Engineering Journal, 2021, 406: 126791. |
| 52 | Liu X N, Du P H, Pan W Y, et al. Immobilization of uranium(Ⅵ) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction[J]. Applied Catalysis B: Environmental, 2018, 231: 11-22. |
| 53 | Huang X S, Xiao J T, Mei P, et al. The synthesis of Z-scheme MoS2/g-C3N4 heterojunction for enhanced visible-light-driven photoreduction of uranium[J]. Catalysis Letters, 2022, 152(7): 1981-1989. |
| 54 | Dai Z R, Zhen Y, Sun Y S, et al. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(Ⅵ) removal[J]. Chemical Engineering Journal, 2021, 415: 129002. |
| 55 | Devi L G, Kavitha R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity[J]. Applied Catalysis B: Environmental, 2013, 140/141: 559-587. |
| 56 | Feng J N, Yang Z Q, He S, et al. Photocatalytic reduction of uranium(Ⅵ) under visible light with Sn-doped In2S3 microspheres[J]. Chemosphere, 2018, 212: 114-123. |
| 57 | Chen T, Yu K F, Dong C X, et al. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives[J]. Coordination Chemistry Reviews, 2022, 467: 214615. |
| 58 | Zhang P, Tong Y W, Liu Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride[J]. Angewandte Chemie-International Edition, 2020, 59(37): 16209-16217. |
| 59 | Chen L, Chen C, Yang Z, et al. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride[J]. Advanced Functional Materials, 2021, 31(46): 2105731. |
| 60 | Zhao D M, Dong C L, Wang B, et al. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution[J]. Advanced Materials, 2019, 31(43): 1903545. |
| 61 | Yu K F, Li Y, Cao X, et al. In-situ constructing amidoxime groups on metal-free g-C3N4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(Ⅵ) extraction[J]. Journal of Hazardous Materials, 2023, 460: 132356. |
| 62 | Liu S, Wang Z, Lu Y X, et al. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent[J]. Applied Catalysis B: Environmental, 2021, 282: 119523. |
| 63 | Raj S K, Carrier A J, Youden B C, et al. Electrochemical techniques for uranium extraction from water[J]. Chemical Engineering Journal, 2024, 492: 152341. |
| 64 | Jung C H, Lee H Y, Moon J K, et al. Electrosorption of uranium ions on activated carbon fibers[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287(3): 833-839. |
| 65 | Ismail A F, Yim M S. Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater[J]. Nuclear Engineering and Technology, 2015, 47(5): 579-587. |
| 66 | Zhou J, Zhou H J, Zhang Y Z, et al. Pseudocapacitive deionization of uranium(Ⅵ) with WO3/C electrode[J]. Chemical Engineering Journal, 2020, 398: 125460. |
| 67 | Liu X L, Xie Y H, Hao M J, et al. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst[J]. Advanced Science, 2022, 9(23): 2201735. |
| 68 | Wang W W, Liu S J, Zhou Y M, et al. Extraction of Sr2+ from aqueous solutions using an asymmetric pulsed current-assisted electrochemical method[J]. Separation and Purification Technology, 2021, 276: 119235. |
| 69 | Yang H, Liu X L, Hao M J, et al. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater[J]. Advanced Materials, 2021, 33(51): 2106621. |
| 70 | Wang C Y, Xu M Y, Wang W W, et al. A supramolecular organic framework-mediated electrochemical strategy achieves highly selective and continuous uranium extraction[J]. Advanced Functional Materials, 2024, 34(41): 2402130. |
| 71 | Zhang C R, Qi J X, Cui W R, et al. A novel 3D sp2 carbon-linked covalent organic framework as a platform for efficient electro-extraction of uranium[J]. Science China Chemistry, 2023, 66(2): 562-569. |
| 72 | Zaheri A, Moheb A, Keshtkar A, et al. Uranium separation from wastewater by electrodialysis[J]. Iranian Journal of Environmental Health Science & Engineering, 2010, 7: 423-430. |
| 73 | Li R R, Wang H Y, Yan J Y, et al. A cascade electro-dehydration process for simultaneous extraction and enrichment of uranium from simulated seawater[J]. Water Research, 2023, 240: 120079. |
| 74 | Li T H, Ye H, Jin J M, et al. Electric-field strengthening uranium extraction from seawater assisted by nanofiltration membranes with sieving-adsorption properties[J]. Journal of Membrane Science, 2024, 693: 122334. |
| 75 | Li Z X, Li Z, Huang H, et al. Green lithium: photoelectrochemical extraction[J]. PhotoniX, 2023, 4(1): 23. |
| 76 | Li H N, Zhang C, Xin J H, et al. Design of photothermal "ion pumps" for achieving energy-efficient, augmented, and durable lithium extraction from seawater[J]. ACS Nano, 2024, 18(3): 2434-2445. |
| 77 | Chen X, Yu W H, Zhang Y, et al. Solar-driven lithium extraction by a floating felt[J]. Advanced Functional Materials, 2024, 34(28): 2316178. |
| 78 | Wang M L, Zhang T Y, Meng Z X, et al. Self-intercepting interference of hydrogen-bond induced flexible hybrid film to facilitate lithium extraction[J]. Chemical Engineering Journal, 2023, 458: 141403. |
| 79 | Li Z, Chen I C, Cao L, et al. Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design[J]. Science, 2024, 385(6716): 1438-1444. |
| 80 | Bai L, Xu R B, Wu W J, et al. Insights into adsorbent materials for lithium extraction by capacitive deionization: reconceptualizing the role of materials informatics[J]. Journal of Materials Chemistry A, 2024, 12(18): 10676-10685. |
| 81 | Li Z, Li C Y, Liu X W, et al. Continuous electrical pumping membrane process for seawater lithium mining[J]. Energy & Environmental Science, 2021, 14(5): 3152-3159. |
| 82 | Wang W G, Hong G H, Zhang Y Q, et al. Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction[J]. Journal of Membrane Science, 2023, 675: 121534. |
| 83 | Yin X C, Xu P, Wang H Y. Modification of cation exchange membranes for enhanced extraction of lithium from magnesium and sodium brine solutions via selective electrodialysis[J]. Journal of Membrane Science, 2024, 701: 122705. |
| 84 | Liu C, Li Y B, Lin D C, et al. Lithium extraction from seawater through pulsed electrochemical intercalation[J]. Joule, 2020, 4(7): 1459-1469. |
| 85 | Yu J Z, Fang D L, Zhang H, et al. Ocean mining: a fluidic electrochemical route for lithium extraction from seawater[J]. ACS Materials Letters, 2020, 2(12): 1662-1668. |
| 86 | Liu D F, Sun S Y, Yu J G. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials[J]. Chemical Engineering Journal, 2019, 377: 119825. |
| 87 | Wang W W, Xu M Y, Wu H T, et al. Precise electrocatalysis on Fe-porphyrin conjugated networks achieves energy-efficient extraction of uranium[J]. Advanced Science, 2024, 11(44): e2409084. |
| 88 | Xie Y, Liu Z Y, Geng Y Y, et al. Uranium extraction from seawater: material design, emerging technologies and marine engineering[J]. Chemical Society Reviews, 2023, 52(1): 97-162. |
| [1] | Liao HE, Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on aromatic hydrocarbons separation from petroleum hydrocarbons [J]. CIESC Journal, 2025, 76(5): 1909-1926. |
| [2] | Kun LI, Rui HUANG, Jun CONG, Haitao MA, Longjiao CHANG, Shaohua LUO. Simultaneous evolution of structural morphology and lithium storage properties in NCM622 cathode material [J]. CIESC Journal, 2025, 76(4): 1831-1840. |
| [3] | Mengqi SHI, Huan WANG, Shoujuan WANG, Yuebin XI, Fangong KONG. Research progress of lignin-based polyporous carbon in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(4): 1463-1483. |
| [4] | Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries [J]. CIESC Journal, 2025, 76(4): 1422-1431. |
| [5] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
| [6] | Zhongchen MA, Zijie WEI, Mingtao ZHU, Hengdi YE, Xueyi GUO, Lei TAN. Preparation of battery-grade manganese tetroxide for lithium manganate cathode material by one-step oxidation method [J]. CIESC Journal, 2025, 76(3): 1363-1374. |
| [7] | Jiaxin CUI, Mengfan YIN, Tao ZHENG, Han LIU, Rui ZHANG, Zhichang LIU, Haiyan LIU, Chunming XU, Xianghai MENG. Application of aluminum-copper bimetallic ionic liquids in 1-hexene/n-hexane separation [J]. CIESC Journal, 2025, 76(2): 686-694. |
| [8] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
| [9] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Current status and prospects of research on fluidization characteristics of high-density particles [J]. CIESC Journal, 2025, 76(2): 466-483. |
| [10] | Linrui YANG, Jianyi LIU, Ling LI, Yongchao HE, Kaitian ZHENG, Jianpo REN, Chunjian XU. Process design and energy saving for benzene/cyclohexane/cyclohexene extractive distillation process [J]. CIESC Journal, 2025, 76(2): 731-743. |
| [11] | Xiaonan YOU, Xiaoqiang FAN, Yao YANG, Jingdai WANG, Yongrong YANG. Modeling method of depressurization separation process of the mixture of high-pressure polyethylene and supercritical ethylene [J]. CIESC Journal, 2025, 76(2): 695-706. |
| [12] | Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process [J]. CIESC Journal, 2025, 76(2): 707-717. |
| [13] | Yi ZHONG, Shiyu ZHOU, Lianchao JIU, Yuxiao LI, Haojiang WU, Zhiyong ZHOU. Research progress on direct remediation and regeneration of cathode materials from spent lithium iron phosphate batteries [J]. CIESC Journal, 2024, 75(S1): 1-13. |
| [14] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
| [15] | Huihui XIE, Jiaxin JIANG, Xin WANG, Zheng LI, Xin GUO, Xinran LYU, Lingyun WANG, Yang LIU. Study on transport separation of platinum and palladium by deep eutectic solvent polymer inclusion membrane [J]. CIESC Journal, 2024, 75(S1): 235-243. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||