CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2055-2069.DOI: 10.11949/0438-1157.20241211
• Reviews and monographs • Previous Articles Next Articles
Zehai XU(
), Chao LIU, Guoliang ZHANG(
)
Received:2024-10-31
Revised:2025-01-25
Online:2025-06-13
Published:2025-05-25
Contact:
Guoliang ZHANG
通讯作者:
张国亮
作者简介:徐泽海(1991—),男,博士,副研究员,zhxu327@zjut.edu.cn
基金资助:CLC Number:
Zehai XU, Chao LIU, Guoliang ZHANG. Hydrophobic pervaporation membranes on polymer substrate for solvent recovery[J]. CIESC Journal, 2025, 76(5): 2055-2069.
徐泽海, 刘超, 张国亮. 聚合物基疏水渗透汽化膜及其溶剂回收应用[J]. 化工学报, 2025, 76(5): 2055-2069.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 (a) Schematic diagram of polymer-based composite membrane; (b) Comparison of solubility parameters of some hydrophobic film materials and ethanol/water
| 框架材料名称 | 孔尺寸/Å | BET比表面积/(m2/g) | 孔隙体积/(cm3/g) | 文献 |
|---|---|---|---|---|
| ZIF-8 | 3.4 | 1344 | 0.554 | [ |
| ZIF-71 | 4.8 | 1007 | 0.452 | [ |
| ZIF-67 | 4.51 | 1245 | 0.665 | [ |
| ZIF-90 | 2.86 | 1360 | 0.561 | [ |
| MAF-6 | 7.6 | 1343 | 0.63 | [ |
| MOF-808 | 14 | 2060 | 0.84 | [ |
| MIL-53 | 8 | 1294 | 0.65 | [ |
| MIL-101 | 12 | 2500 | 1.22 | [ |
| COF-300 | 0.7 | 1360 | 0.72 | [ |
| COF-DVA | 2.53 | 663 | — | [ |
| CuCOF | 1.89 | 515 | — | [ |
| COF-LZU1 | 74.5 | 583 | 0.48 | [ |
| COF- LZU8 | 12.3 | 454 | 0.36 | [ |
| COF-42 | 2.3 | 659 | 0.29 | [ |
Table 1 Structural parameters of MOFs and COFs for pervaporation membranes
| 框架材料名称 | 孔尺寸/Å | BET比表面积/(m2/g) | 孔隙体积/(cm3/g) | 文献 |
|---|---|---|---|---|
| ZIF-8 | 3.4 | 1344 | 0.554 | [ |
| ZIF-71 | 4.8 | 1007 | 0.452 | [ |
| ZIF-67 | 4.51 | 1245 | 0.665 | [ |
| ZIF-90 | 2.86 | 1360 | 0.561 | [ |
| MAF-6 | 7.6 | 1343 | 0.63 | [ |
| MOF-808 | 14 | 2060 | 0.84 | [ |
| MIL-53 | 8 | 1294 | 0.65 | [ |
| MIL-101 | 12 | 2500 | 1.22 | [ |
| COF-300 | 0.7 | 1360 | 0.72 | [ |
| COF-DVA | 2.53 | 663 | — | [ |
| CuCOF | 1.89 | 515 | — | [ |
| COF-LZU1 | 74.5 | 583 | 0.48 | [ |
| COF- LZU8 | 12.3 | 454 | 0.36 | [ |
| COF-42 | 2.3 | 659 | 0.29 | [ |
Fig.5 (a) Structure diagram of silicalite-1/PDMDES pervaporation membrane[38]; (b) Schematic diagram of the synthesis process of MA-silicalite-1/MA-PDMS membrane[39]
| 膜 | 温度/℃ | 进料浓度/%(质量分数) | 回收溶剂 | 分离因子 | 渗透通量/(g/(m2·h)) | 文献 |
|---|---|---|---|---|---|---|
| POSS/PDMS | 50 | 10 | 乙醇 | 17.7 | 536 | [ |
| PVTES-HSO | 35 | 9 | 乙醇 | 6.6 | 8160 | [ |
| TMSC/PDMS | 24 | 5 | 乙醇 | 14 | 1600 | [ |
| UiO-66-NH2-TMS/PDMS | 40 | 5 | 乙醇 | 5.8 | 5277.9 | [ |
| 1173IPS-MA/PDMS | 40 | 5 | 乙醇 | 8.4 | 930 | [ |
| PMHS/PDMS | 60 | 5 | 乙醇 | 12 | 1204 | [ |
| MAF-6/PDMS | 40 | 5 | 乙醇 | 14.9 | 1200 | [ |
| LZU8/PDMS | 60 | 5 | 乙醇 | 11 | 5000 | [ |
| LDDLT-ZIF-L/PDMS | 40 | 5 | 乙醇 | 12.3 | 1120 | [ |
| MIL-53/PDMS | 70 | 5 | 乙醇 | 11.1 | 5467 | [ |
| DMDES/PDMS | 35 | 5 | 乙醇 | 6.5 | 7565.6 | [ |
| MOF-NS/PDMS | 40 | 5 | 乙醇 | 8.9 | 6800 | [ |
| Suspension-dispersed ZIF-8/PDMS | 40 | 5 | 丁醇 | 34 | 1358 | [ |
| PDMS-PMHS/ZIF-8 | 60 | 3 | 丁醇 | 64.59 | 2334.6 | [ |
| COF-LZU1/PEBA | 70 | 3.7 | 丁醇 | 22.2 | 611 | [ |
| PIM-1/PVDF 18-A3 (2% PIM-1) | 65 | 6 | 丁醇 | 13.3 | 9080 | [ |
| PIM-1/PDMS | 60 | 1 | 丁醇 | 30.7 | 1425.3 | [ |
| TAO/ZIF-8/K-PDMS | 70 | 1 | 丁醇 | 40.3 | 2890 | [ |
| PDMS/P-ZNC | 60 | 1 | 丁醇 | 40.7 | 1035.4 | [ |
| ZIF-8@ABT/PDMS | 70 | 1 | 丁醇 | 44 | 1074 | [ |
| ILTf2N@MIL-101/PEBA | 30 | 5 | 乙酸乙酯 | 207.6 | 2354 | [ |
| PEBA/ZSM-5-10 | 50 | 5 | 乙酸乙酯 | 185.5 | 199.5 | [ |
| PAN-C3-P3 | 50 | 1 | 乙酸乙酯 | 70 | 7850 | [ |
| 3%ZIF-67/ PVDF | 30 | 1.5 | 甲苯 | 41.2 | 467.6 | [ |
Table 2 Application of polymer-based hydrophobic pervaporation membranes in solvent recovery
| 膜 | 温度/℃ | 进料浓度/%(质量分数) | 回收溶剂 | 分离因子 | 渗透通量/(g/(m2·h)) | 文献 |
|---|---|---|---|---|---|---|
| POSS/PDMS | 50 | 10 | 乙醇 | 17.7 | 536 | [ |
| PVTES-HSO | 35 | 9 | 乙醇 | 6.6 | 8160 | [ |
| TMSC/PDMS | 24 | 5 | 乙醇 | 14 | 1600 | [ |
| UiO-66-NH2-TMS/PDMS | 40 | 5 | 乙醇 | 5.8 | 5277.9 | [ |
| 1173IPS-MA/PDMS | 40 | 5 | 乙醇 | 8.4 | 930 | [ |
| PMHS/PDMS | 60 | 5 | 乙醇 | 12 | 1204 | [ |
| MAF-6/PDMS | 40 | 5 | 乙醇 | 14.9 | 1200 | [ |
| LZU8/PDMS | 60 | 5 | 乙醇 | 11 | 5000 | [ |
| LDDLT-ZIF-L/PDMS | 40 | 5 | 乙醇 | 12.3 | 1120 | [ |
| MIL-53/PDMS | 70 | 5 | 乙醇 | 11.1 | 5467 | [ |
| DMDES/PDMS | 35 | 5 | 乙醇 | 6.5 | 7565.6 | [ |
| MOF-NS/PDMS | 40 | 5 | 乙醇 | 8.9 | 6800 | [ |
| Suspension-dispersed ZIF-8/PDMS | 40 | 5 | 丁醇 | 34 | 1358 | [ |
| PDMS-PMHS/ZIF-8 | 60 | 3 | 丁醇 | 64.59 | 2334.6 | [ |
| COF-LZU1/PEBA | 70 | 3.7 | 丁醇 | 22.2 | 611 | [ |
| PIM-1/PVDF 18-A3 (2% PIM-1) | 65 | 6 | 丁醇 | 13.3 | 9080 | [ |
| PIM-1/PDMS | 60 | 1 | 丁醇 | 30.7 | 1425.3 | [ |
| TAO/ZIF-8/K-PDMS | 70 | 1 | 丁醇 | 40.3 | 2890 | [ |
| PDMS/P-ZNC | 60 | 1 | 丁醇 | 40.7 | 1035.4 | [ |
| ZIF-8@ABT/PDMS | 70 | 1 | 丁醇 | 44 | 1074 | [ |
| ILTf2N@MIL-101/PEBA | 30 | 5 | 乙酸乙酯 | 207.6 | 2354 | [ |
| PEBA/ZSM-5-10 | 50 | 5 | 乙酸乙酯 | 185.5 | 199.5 | [ |
| PAN-C3-P3 | 50 | 1 | 乙酸乙酯 | 70 | 7850 | [ |
| 3%ZIF-67/ PVDF | 30 | 1.5 | 甲苯 | 41.2 | 467.6 | [ |
Fig.8 (a) Preparation diagram of suspended dispersed ZIF-8/PDMS mixed matrix membrane; Influence of feed concentration (b) and temperature (c) on pervaporation performance[52]
| 1 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
| 2 | Wang Q, Qian C, Li Y N, et al. Preparation and application of highly oriented MFI zeolite membranes for efficient pervaporation recovery of organic solvents[J]. Journal of Membrane Science, 2024, 709: 123117. |
| 3 | 赵静, 金万勤. 基于三维多孔填料的聚二甲基硅氧烷混合基质渗透汽化膜研究进展[J]. 华东理工大学学报(自然科学版), 2024, 50(5): 633-644. |
| Zhao J, Jin W Q. Research progress of polydimethylsiloxane mixed matrix pervaporation membranes based on three-dimensional porous fillers[J]. Journal of East China University of Science and Technology, 2024, 50(5): 633-644. | |
| 4 | Jia Z Q, Wu G R. Metal-organic frameworks based mixed matrix membranes for pervaporation[J]. Microporous and Mesoporous Materials, 2016, 235: 151-159. |
| 5 | Xu X, Nikolaeva D, Hartanto Y, et al. MOF-based membranes for pervaporation[J]. Separation and Purification Technology, 2021, 278: 119233. |
| 6 | 张浩, 伍艳辉. MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用[J]. 化学进展, 2023, 35(8): 1154-1167. |
| Zhang H, Wu Y H. Preparation and modification of MOF-polymer mixed matrix membrane and its application in pervaporation[J]. Progress in Chemistry, 2023, 35(8): 1154-1167. | |
| 7 | 李妍, 吴芹, 陈康成, 等. 聚酰亚胺渗透汽化膜用于有机溶剂脱水的改性研究进展[J]. 化工进展, 2024, 43(6): 2915-2927. |
| Li Y, Wu Q, Chen K C, et al. Modified polyimide pervaporation membranes for dehydration of organic solvent[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2915-2927. | |
| 8 | Sang C, Zhang S Y, Si Z H, et al. Design of PDMS/PAN composite membranes with ultra-interfacial stability via layer integration[J]. Materials Horizons, 2024, 11(19): 4681-4688. |
| 9 | Grimaldi J, Imbrogno J, Kilduff J C, et al. New class of synthetic membranes: organophilic pervaporation brushes for organics recovery[J]. Chemistry of Materials, 2015, 27(11): 4142-4148. |
| 10 | 张琪, 王泽众, 李盈莹, 等. 用于醇脱水的渗透汽化有机膜的改性研究进展[J]. 膜科学与技术, 2023, 43(4): 184-195. |
| Zhang Q, Wang Z Z, Li Y Y, et al. Research progress in the modification of pervaporation organic membranes for alcohol dehydration[J]. Membrane Science and Technology, 2023, 43(4): 184-195. | |
| 11 | Xiong Y, Shu Y F, Deng N Y, et al. A novel modified ZIF-8 nanoparticle with enhanced interfacial compatibility and pervaporation performance in a mixed matrix membrane for de-alcoholization in low-concentration solutions[J]. Molecules, 2024, 29(18): 4465. |
| 12 | Luo R W, Fu H Y, Li Y L, et al. In situ fabrication of metal-organic framework thin films with enhanced pervaporation performance[J]. Advanced Functional Materials, 2023, 33(18): 2213221. |
| 13 | Li W B, Su P C, Li Z J, et al. Ultrathin metal-organic framework membrane production by gel-vapour deposition[J]. Nature Communications,2017, 8: 406. |
| 14 | Li W B, Zhang Y F, Zhang C Y, et al. Transformation of metal-organic frameworks for molecular sieving membranes[J]. Nature Communications, 2016, 7: 11315. |
| 15 | Choudhury S, Ray S K. Synthesis of polymer nanoparticles based highly selective membranes by mini-emulsion polymerization for dehydration of 1,4-dioxane and recovery of ethanol from water by pervaporation[J]. Journal of Membrane Science, 2021, 617: 118646. |
| 16 | Si Z H, Wu H Z, Qin P Y, et al. Polydimethylsiloxane based membranes for biofuels pervaporation[J]. Separation and Purification Technology, 2022, 298: 121612. |
| 17 | Lin Z H, Yuan Z Y, Dai Z D, et al. A review from material functionalization to process feasibility on advanced mixed matrix membranes for gas separations[J]. Chemical Engineering Journal, 2023, 475: 146075. |
| 18 | Ryder M R, Zeng Z X, Sun Y T, et al. Dielectric properties of metal-organic frameworks probed via synchrotron infrared reflectivity[J/OL]. arXiv, 2018: 1802.06702. . |
| 19 | Khan A, Ali M, Ilyas A, et al. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation[J]. Separation and Purification Technology, 2018, 206: 50-58. |
| 20 | He C T, Jiang L, Ye Z M, et al. Exceptional hydrophobicity of a large-pore metal-organic zeolite[J]. Journal of the American Chemical Society, 2015, 137(22): 7217-7223. |
| 21 | Knozowska K, Thür R, Kujawa J, et al. Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation[J]. Separation and Purification Technology, 2021, 264: 118315. |
| 22 | Chanut N, Ghoufi A, Coulet M V, et al. Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure[J]. Nature Communications, 2020, 11(1): 1216. |
| 23 | Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
| 24 | Wu Y X, Tian Y H, He X P, et al. Preparation of covalent organic framework/PDMS mixed matrix membranes for efficient ethanol recovery via pervaporation[J]. Industrial & Engineering Chemistry Research, 2024, 63(45): 19756-19766. |
| 25 | Guo H K, Fang Y J, Li J Q, et al. Continuous covalent organic framework membranes with ordered nanochannels as tunable transport layers for fast butanol/water separation[J]. Nano Letters, 2024, 24(37): 11438-11445. |
| 26 | Du J, Liang S W, Wang M D, et al. Metal-covalent organic framework nanosheets engineered facilitated transport membranes for toluene/n-heptane separation[J]. Journal of Membrane Science, 2023, 683: 121840. |
| 27 | Banjerdteerakul K, Peng H, Li K. Covalent organic frameworks based membranes for separation of azeotropic solvent mixtures by pervaporation[J]. Journal of Membrane Science, 2023, 678: 121679. |
| 28 | Zhang L L, Wang L, Wang N X, et al. Covalent organic frameworks hybird membrane with optimized mass transport nanochannel for aromatic/aliphatic mixture pervaporation[J]. Journal of Membrane Science, 2020, 598: 117652. |
| 29 | Fan H W, Xie Y F, Li J C, et al. Ultra-high selectivity COF-based membranes for biobutanol production[J]. Journal of Materials Chemistry A, 2018, 6(36): 17602-17611. |
| 30 | Feng X Q, Zhu J Y, Jin J, et al. Polymers of intrinsic microporosity for membrane-based precise separations[J]. Progress in Materials Science, 2024, 144: 101285. |
| 31 | Zhuang Y, Si Z H, Pang S Y, et al. Recent progress in pervaporation membranes for furfural recovery: a mini review[J]. Journal of Cleaner Production, 2023, 396: 136481. |
| 32 | Fatima S, Govardhan B, Kalyani S, et al. Extraction of volatile organic compounds from water and wastewater by vacuum-driven membrane process: a comprehensive review[J]. Chemical Engineering Journal, 2022, 434: 134664. |
| 33 | Zhou L, Li S Y, Chen L, et al. MOFs and COFs based pervaporation membranes for alcohols/water separation: a review[J]. Separation and Purification Technology, 2024, 330: 125324. |
| 34 | Liu H X, Wang N X, Zhao C, et al. Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures: a review[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 1-16. |
| 35 | Jia W, Sun W, Xia C J, et al. Copolymerization modification of poly(vinyltriethoxysilane) membranes for ethanol recovery by pervaporation[J]. RSC Advances, 2017, 7(86): 54441-54452. |
| 36 | Yin H D, Cay-Durgun P, Lai T M, et al. Effect of ZIF-71 ligand-exchange surface modification on biofuel recovery through pervaporation[J]. Polymer, 2020, 195: 122379. |
| 37 | Xu L H, Li S H, Mao H, et al. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation[J]. Science, 2022, 378(6617): 308-313. |
| 38 | Chen X L, Li N, Wu C Y, et al. Enhancing pervaporation performance for alcohol recovery from aqueous solutions with silicalite-1/polydimethyldiethoxysilane (PDMDES) nanocomposite membranes[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 508-524. |
| 39 | Si Z H, Li G Z, Wang Z, et al. A particle-driven, ultrafast-cured strategy for tuning the network cavity size of membranes with outstanding pervaporation performance[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31887-31895. |
| 40 | Liu S, Liu G Z, Zhao B J, et al. Methanol/dimethyl carbonate separation using graphene oxide membrane via cationic control of molecular transport channels[J]. Journal of Membrane Science, 2022, 650: 120457. |
| 41 | Zhang X, Xiao L L, Zhang G L, et al. Preparation of stable multilayer PDMS composite pervaporation membrane incorporated with in situ transformed metal organic frameworks for enhanced butanol recovery[J]. Journal of Membrane Science, 2024, 700: 122727. |
| 42 | Wang H, Tang S H, Ni Y X, et al. Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes[J]. Journal of Membrane Science, 2020, 598: 117791. |
| 43 | Zhan X, Wang M Y, Gao T, et al. A highly selective sorption process in POSS-g-PDMS mixed matrix membranes for ethanol recovery via pervaporation[J]. Separation and Purification Technology, 2020, 236: 116238. |
| 44 | Puspasari T, Chakrabarty T, Genduso G, et al. Unique cellulose/polydimethylsiloxane blends as an advanced hybrid material for organic solvent nanofiltration and pervaporation membranes[J]. Journal of Materials Chemistry A, 2018, 6(28): 13685-13695. |
| 45 | Si Z H, Liu C, Xue T L, et al. Polymeric membranes through self-initiation and self-polymerization for high-performance bioethanol pervaporation[J]. Journal of Materials Chemistry A, 2022, 10(34): 17699-17709. |
| 46 | Fan H W, Wang R, Shan L L, et al. One-step assembly of molecular separation membranes by direct atomizing oligomers[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 4074-4083. |
| 47 | Li Q Q, Cheng L, Shen J, et al. Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler[J]. Separation and Purification Technology, 2017, 178: 105-112. |
| 48 | Song D Y, Li C, Li J, et al. Incorporating COFs into PDMS matrix for accelerated crosslinking and efficient ethanol recovery[J]. Journal of Membrane Science, 2024, 696: 122529. |
| 49 | Pei C, Mao H, Wang Y J, et al. Boosting pervaporation performance of ZIF-L/PDMS mixed matrix membranes by surface plasma etching for ethanol/water separation[J]. Separation and Purification Technology, 2023, 318: 124025. |
| 50 | Zhang G J, Li J, Wang N X, et al. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles[J]. Journal of Membrane Science, 2015, 492: 322-330. |
| 51 | Jia W, Sun W, Yu Y P, et al. Low-surface-energy monomer for ultrathin silicone membrane fabrication: towards enhanced ethanol/water pervaporation performance[J]. Separation and Purification Technology, 2019, 222: 361-368. |
| 52 | Fan H W, Wang N X, Ji S L, et al. Nanodisperse ZIF-8/PDMS hybrid membranes for biobutanol permselective pervaporation[J]. Journal of Materials Chemistry A, 2014, 2(48): 20947-20957. |
| 53 | Fan H W, Shan L L, Meng H, et al. High-throughput production of nanodisperse hybrid membranes on various substrates[J]. Journal of Membrane Science, 2018, 552: 177-188. |
| 54 | Si Z H, Cai D, Li S F, et al. Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth[J]. Journal of Membrane Science, 2019, 579: 309-317. |
| 55 | Wu G R, Li Y L, Geng Y Z, et al. In situ preparation of COF-LZU1 in poly(ether-block-amide) membranes for efficient pervaporation of n-butanol/water mixture[J]. Journal of Membrane Science, 2019, 581: 1-8. |
| 56 | Gao L, Alberto M, Gorgojo P, et al. High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation[J]. Journal of Membrane Science, 2017, 529: 207-214. |
| 57 | Zhang X, Tong Z W, Liu C, et al. Functionalized MOF-derived nanoporous carbon as compatible nanofiller to fabricate defect-free PDMS-based mixed matrix pervaporation membranes[J]. ACS Omega, 2022, 7(18): 15786-15794. |
| 58 | Zhang X, Liu F Z, Xu L S, et al. Heterostructured ZIF-8/lamellar talc composites incorporated polydimethylsiloxane membrane with enhanced separation performance for butanol recovery[J]. Journal of Membrane Science, 2022, 650: 120433. |
| 59 | Zhang A S, Li S H, Ahmad A, et al. Coordinate covalent grafted ILs-modified MIL-101/PEBA membrane for pervaporation: adsorption simulation and separation characteristics[J]. Journal of Membrane Science, 2021, 619: 118807. |
| 60 | Gu J, Zhang X R, Bai Y X, et al. ZSM-5 filled polyether block amide membranes for separating EA from aqueous solution by pervaporation[J]. International Journal of Polymer Science, 2013, 2013(1): 760156. |
| 61 | Wu H H, Shen F, Su Y, et al. Modification of polyacrylonitrile membranes via plasma treatment followed by polydimethylsiloxane coating for recovery of ethyl acetate from aqueous solution through vacuum membrane distillation[J]. Separation and Purification Technology, 2018, 197: 178-188. |
| 62 | Kachhadiya D D, Murthy Z V P. Microfluidic synthesized ZIF-67 decorated PVDF mixed matrix membranes for the pervaporation of toluene/water mixtures[J]. Journal of Membrane Science, 2023, 676: 121607. |
| 63 | Naik P V, Wee L H, Meledina M, et al. PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation[J]. Journal of Materials Chemistry A, 2016, 4(33): 12790-12798. |
| 64 | Zhang G L, Cheng H F, Su P C, et al. PIM-1/PDMS hybrid pervaporation membrane for high-efficiency separation of n-butanol-water mixture under low concentration[J]. Separation and Purification Technology, 2019, 216: 83-91. |
| 65 | Zhu H P, Li R H, Liu G Z, et al. Efficient separation of methanol/dimethyl carbonate mixtures by UiO-66 MOF incorporated chitosan mixed-matrix membrane[J]. Journal of Membrane Science, 2022, 652: 120473. |
| 66 | Matavos-Aramyan S, Bagheri G, Jazebizadeh M H. Pervaporation separation of toluene from aqueous solutions using nano-based PEBA/NaX mixed matrix membrane[J]. Silicon, 2019, 11(4): 1725-1730. |
| 67 | Sun Y, Zhao H H, Mao H, et al. Silica hollow spheres-based superhydrophobic PDMS composite membrane for enhanced acetone permselective pervaporation[J]. Separation and Purification Technology, 2023, 304: 122041. |
| 68 | Kim H J, Brunelli N A, Brown A J, et al. Silylated mesoporous silica membranes on polymeric hollow fiber supports: synthesis and permeation properties[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17877-17886. |
| 69 | Chen X L, Zhou Q L, Zhang Y F, et al. Incorporating mixed-ligand zeolitic imidazolate framework into polydimethyldiethoxysilane (PDMDES) membrane for enhancing alcohol pervaporation recovery[J]. ACS Applied Materials & Interfaces, 2024, 16(48): 66594-66610. |
| 70 | Chen X L, Zhou Q L, Chen L Y, et al. Facile preparation of thin and nanodisperse ZIF-8/PDMDES hybrid membrane for efficient alcohol recovery via pervaporation[J]. Chemical Engineering Research and Design, 2024, 206: 27-42. |
| 71 | Ren C, Si Z H, Qu Y X, et al. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation[J]. Separation and Purification Technology, 2022, 284: 120255. |
| 72 | Han W T, Han Z W, Gao X C, et al. Inter-integration reactive distillation with vapor permeation for ethyl levulinate production: equipment development and experimental validating[J]. AIChE Journal, 2022, 68(2): e17441. |
| 73 | Le Hir M, Magne A, Clair T, et al. Solvent regeneration in complex mixture using pervaporation[J]. Organic Process Research & Development, 2021, 25(3): 469-485. |
| 74 | Nishiyama S, Kimura N, Hirai T, et al. Concentrating isopropanol using a pervaporation pilot-scale system and simulating membrane performance in a single-stage process[J]. Industrial & Engineering Chemistry Research, 2023, 62(36): 14611-14619. |
| 75 | Sun X F, Dang G F, Ding X B, et al. Production of alcohol-free wine and grape spirit by pervaporation membrane technology[J]. Food and Bioproducts Processing, 2020, 123: 262-273. |
| [1] | Liuhuimei CHENG, Junying YAN, Huiqing LIU, Zhipeng WANG, Baoying WANG, Tongwen XU, Yaoming WANG. Progress of bipolar membrane electrodialysis for non-aqueous systems [J]. CIESC Journal, 2025, 76(5): 1960-1972. |
| [2] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [3] | Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers [J]. CIESC Journal, 2025, 76(5): 2101-2118. |
| [4] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [5] | Yu LIU, Zhenbo CAI, Lijun JI, Xiaohua MA. Separation of neutral aromatic compounds from tobacco waste by ZIF-67/PDMS composite membrane [J]. CIESC Journal, 2025, 76(5): 2337-2347. |
| [6] | Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications [J]. CIESC Journal, 2025, 76(5): 2042-2054. |
| [7] | Yue ZHANG, Jiaxin LIU, Jing MA, Yi LIU. Recent progress on metal-organic framework membranes towards uranium separation from seawater [J]. CIESC Journal, 2025, 76(5): 2087-2100. |
| [8] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [9] | Yanan YANG, Shengran CHANG, Songlin XUE, Jianming PAN, Weihong XING. Progress of research on photo- and electric-driven to promote uranium and lithium extraction from seawater [J]. CIESC Journal, 2025, 76(5): 1927-1942. |
| [10] | Zibo YANG, Youfa WANG, Hansong YUE, Shuangjie YUAN, Fujiang GENG, Qingqing LI, De AO, Bin LI, Mao YE, Zhenjie GU, Zhihua QIAO. Recent progress of MOF glasses based gas separation membrane [J]. CIESC Journal, 2025, 76(5): 2158-2168. |
| [11] | Di ZHU, Shoujian GAO, Wangxi FANG, Jian JIN. Construction of PES membranes with sponge-like pores and stable super-hydrophilicity through vapor-induced phase separation for oil-in-water emulsion separation [J]. CIESC Journal, 2025, 76(5): 2397-2409. |
| [12] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [13] | Renze SHI, Qiuyan DING, Zhenjun YUAN, Jian NA, Jianhua LIU, Shuhu GUO, Xiong ZHAO, Hong LI, Xin GAO. Study on the purification technology of 4N electronic-grade diethoxymethylsilane [J]. CIESC Journal, 2025, 76(5): 2186-2197. |
| [14] | Minggang GUO, Xiaohang YANG, Yan DAI, Panpan MI, Shixin MA, Gaohong HE, Wu XIAO, Fujun CUI. Optimal design of integration process for helium extraction from helium-poor pipeline natural gas with diversified products [J]. CIESC Journal, 2025, 76(5): 2251-2261. |
| [15] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||