CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2042-2054.DOI: 10.11949/0438-1157.20241230
• Reviews and monographs • Previous Articles Next Articles
Haofan ZHAO1(
), Haojie REN1, Zongkai LIU1, Guanying DONG1,2(
), Yatao ZHANG1,2(
)
Received:2024-11-01
Revised:2025-01-07
Online:2025-06-13
Published:2025-05-25
Contact:
Guanying DONG, Yatao ZHANG
赵浩帆1(
), 任豪杰1, 刘宗凯1, 董冠英1,2(
), 张亚涛1,2(
)
通讯作者:
董冠英,张亚涛
作者简介:赵浩帆(2000—),男,硕士研究生,hhzh202406@163.com
基金资助:CLC Number:
Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications[J]. CIESC Journal, 2025, 76(5): 2042-2054.
赵浩帆, 任豪杰, 刘宗凯, 董冠英, 张亚涛. MOFs玻璃膜在气体分离领域的研究进展[J]. 化工学报, 2025, 76(5): 2042-2054.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 (a) Melting-quenching process of MOFs glass[13]; (b) Crystal structures of typical ZIFs glass precursors and corresponding melting temperature Tm and decomposition temperature Td
Fig.5 (a) EDXS patterns of ZIF-62 glass films[63]; (b) Single gas permeance as a function of gas kinetic diameter[63]; (c) SEM image of the cross-section of agZIF-62 glass films prepared by atomic layer deposition[65]; (d) SEM image of the cross-section of the corresponding ZIF-62 glass films prepared by electrochemical assisted method[51]; (e) CO2/N2 and (f) CO2/CH4 separation performance of electrochemically assisted method of preparation of glass films [51]
Fig.6 (a) Effect of PEI decomposition process on the formation of agfZIF-62[69]; (b) High-resolution TEM image of agfZIF-62[69]; (c) Comparison of gas separation performance of agfZIF-62 membrane[69]
Fig. 7 (a) Preparation process of CGC membranes[75]; (b) Modelling of transmembrane transport of C2H6 molecules[75]; (c) Gas separation properties of ag[(ZIF-62)1-X (ZIF-8) X ] membranes[75]
Fig. 8 (a) Cross-sectional SEM images of ZIF-62/PIM-1 [(1), (3)] and agZIF-62/PIM-1 [(2), (4)][44]; (b) Comparison of agZIF-62/PIM-1 performance[44]; (c) Cross-sectional SEM images of ZIF-62/PBI [(1), (3)] and agZIF-62/PBI [(2), (4)][80]; (d) Comparison of agZIF-62/PBI performance[80]
| 1 | Han B H. Porous organic polymers[J]. Journal of Polymer Science, 2024, 62(8): 1491-1492. |
| 2 | Bumstead A M, Castillo-Blas C, Pakamorė I, et al. Formation of a meltable purinate metal-organic framework and its glass analogue[J]. Chemical Communications, 2023, 59(6): 732-735. |
| 3 | Liu X M, Tang B, Long J L, et al. The development of MOFs-based nanomaterials in heterogeneous organocatalysis[J]. Science Bulletin, 2018, 63(8): 502-524. |
| 4 | Zhao X D, Zheng M Q, Gao X L, et al. The application of MOFs-based materials for antibacterials adsorption[J]. Coordination Chemistry Reviews, 2021, 440: 213970. |
| 5 | 李沐紫, 贾国伟, 赵砚珑, 等. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
| Li M Z, Jia G W, Zhao Y L, et al. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379. | |
| 6 | Xie X J, Zeng H, Lu W G, et al. Metal-organic frameworks for hydrocarbon separation: design, progress, and challenges[J]. Journal of Materials Chemistry A, 2023, 11(38): 20459-20469. |
| 7 | Tan H, Zhao X, Du L T, et al. One-pot synthesis of MOF@MOF: structural incompatibility leads to core-shell structure and adaptability control makes the sequence[J]. Small, 2024, 20(3): 2305881. |
| 8 | Bi W D, Han L X, Liu Y T, et al. The key to MOF membrane fabrication and application: the trade-off between crystallization and film formation[J]. Chemistry, 2024, 30(64): e202401868. |
| 9 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
| 10 | Horike S, Shimomura S, Kitagawa S. Soft porous crystals[J]. Nature Chemistry, 2009, 1(9): 695-704. |
| 11 | Yao M S, Otake K I, Xue Z Q, et al. Concluding remarks: current and next generation MOFs[J]. Faraday Discussions, 2021, 231(0): 397-417. |
| 12 | Bennett T D, Tan J C, Yue Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nature Communications, 2015, 6(1): 8079. |
| 13 | Wang M Y, Zhao H Y, Du B W, et al. Functions and applications of emerging metal-organic-framework liquids and glasses[J]. Chemical Communications, 2023, 59(47): 7126-7140. |
| 14 | 刘鑫宇, 郭超慧, 陶海征, 等. Fe-金属有机框架玻璃的形成过程与机理[J]. 硅酸盐学报, 2024, 52(8): 2553-2558. |
| Liu X Y, Guo C H, Tao H Z, et al. Formation mechanism of a Fe-based metal-organic frameworks glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2553-2558. | |
| 15 | Qiao A, Bennett T D, Tao H Z, et al. A metal-organic framework with ultrahigh glass-forming ability[J]. Science Advances, 2018, 4(3): eaao6827. |
| 16 | Kouser S, Hezam A, Nagesh Khadri M J, et al. A review on zeolite imidazole frameworks: synthesis, properties, and applications[J]. Journal of Porous Materials, 2022, 29(3): 663-681. |
| 17 | Ma N, Kosasang S, Berdichevsky E K, et al. Functional metal-organic liquids[J]. Chemical Science, 2024, 15(20): 7474-7501. |
| 18 | Peng S X, Zhu Y Y, Li G, et al. Experimental evidence of β-relaxation and its structural origin in ZIF-62 glass[J]. Soft Matter, 2023, 19(29): 5575-5582. |
| 19 | Yan S H, Bennett T D, Feng W P, et al. Brittle-to-ductile transition and theoretical strength in a metal-organic framework glass[J]. Nanoscale, 2023, 15(18): 8235-8244. |
| 20 | Laulainen J E M, Johnstone D N, Bogachev I, et al. Mapping short-range order at the nanoscale in metal-organic framework and inorganic glass composites[J]. Nanoscale, 2022, 14(44): 16524-16535. |
| 21 | Widmer R N, Lampronti G I, Anzellini S, et al. Pressure promoted low-temperature melting of metal-organic frameworks[J]. Nature Materials, 2019, 18(4): 370-376. |
| 22 | Sørensen S S, Østergaard M B, Stepniewska M, et al. Metal-organic framework glasses possess higher thermal conductivity than their crystalline counterparts[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18893-18903. |
| 23 | 叶茂, 奥德, 孙玉绣, 等. 新型自支撑ZIF玻璃膜的制备及气体分离性能[J]. 硅酸盐学报, 2024, 52(8): 2545-2552. |
| Ye M, Ao D, Sun Y X, et al. Preparation and performance of a novel self-supported ZIF glass membrane for gas separation[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2545-2552. | |
| 24 | Zhao Y F, Zeng H, Zhu X W, et al. Metal-organic frameworks as photoluminescent biosensing platforms: mechanisms and applications[J]. Chemical Society Reviews, 2021, 50(7): 4484-4513. |
| 25 | Zheng Y Q, Wang J H, Huang H K, et al. Research and application of MOFs-derived porous carbon materials in food safety detection: a review[J]. Trends in Food Science & Technology, 2024, 147: 104449. |
| 26 | Maliha Z, Rani M, Neffati R, et al. Investigation of copper/cobalt MOFs nanocomposite as an electrode material in supercapacitors[J]. International Journal of Energy Research, 2022, 46(12): 17404-17415. |
| 27 | Orton G R F, Champness N R. Through the MOF looking glass[J]. Nature Materials, 2024, 23(2): 172-173. |
| 28 | Qiao A, Sørensen S S, Stepniewska M, et al. Hypersensitivity of the glass transition to pressure history in a metal-organic framework glass[J]. Chemistry of Materials, 2022, 34(11): 5030-5038. |
| 29 | Yin Z, Zhao Y B, Wan S, et al. Synergistic stimulation of metal-organic frameworks for stable super-cooled liquid and quenched glass[J]. Journal of the American Chemical Society, 2022, 144(29): 13021-13025. |
| 30 | Fonseca J, Gong T H, Jiao L, et al. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses[J]. Journal of Materials Chemistry A, 2021, 9(17): 10562-10611. |
| 31 | Yin Z, Zhang Y B, Yu H B, et al. How to create MOF glasses and take advantage of emerging opportunities[J]. Science Bulletin, 2020, 65(17): 1432-1435. |
| 32 | Xue W L, Das D C, Weiß J B, et al. Insights into the mechanochemical glass formation of zeolitic imidazolate frameworks[J]. Angewandte Chemie International Edition, 2024, 63(38): e202405307. |
| 33 | Umeyama D, Horike S, Inukai M, et al. Reversible solid-to-liquid phase transition of coordination polymer crystals[J]. Journal of the American Chemical Society, 2015, 137(2): 864-870. |
| 34 | Aghajani Hashjin M, Zarshad S, Motejadded Emrooz H B, et al. Enhanced atmospheric water harvesting efficiency through green-synthesized MOF-801: a comparative study with solvothermal synthesis[J]. Scientific Reports, 2023, 13(1): 16983. |
| 35 | Tan B Q, Luo Y S, Liang X H, et al. Mixed-solvothermal synthesis of MIL-101(Cr) and its water adsorption/desorption performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2983-2990. |
| 36 | Zhang Y T, Wang Y C, Xia H N, et al. A hybrid ZIF-8/ZIF-62 glass membrane for gas separation[J]. Chemical Communications, 2022, 58(68): 9548-9551. |
| 37 | Bumstead A M, Ríos Gómez M L, Thorne M F, et al. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks[J]. CrystEngComm, 2020, 22(21): 3627-3637. |
| 38 | Zhou C, Longley L, Krajnc A, et al. Metal-organic framework glasses with permanent accessible porosity[J]. Nature Communications, 2018, 9(1): 5042. |
| 39 | Li S C, Limbach R, Longley L, et al. Mechanical properties and processing techniques of bulk metal-organic framework glasses[J]. Journal of the American Chemical Society, 2019, 141(2): 1027-1034. |
| 40 | Thorne M F, Gómez M L R, Bumstead A M, et al. Mechanochemical synthesis of mixed metal, mixed linker, glass-forming metal-organic frameworks[J]. Green Chemistry, 2020, 22(8): 2505-2512. |
| 41 | Mancia L, Yang J, Spratt J S, et al. Acoustic cavitation rheometry[J]. Soft Matter, 2021, 17(10): 2931-2941. |
| 42 | Shi Z X, Zhou H, Li F, et al. Ultrasound-assisted synthesis of NaZn2(OH)(MoO4)2·H2O for effective sonocatalytic performance[J]. Materials Science in Semiconductor Processing, 2022, 144: 106562. |
| 43 | Yi J, Lee G, Park S S. Solvent-induced structural rearrangement in ultrasound-assisted synthesis of metal-organic frameworks[J]. Small Methods, 2024, 8(12): 2400363. |
| 44 | Feng Y, Yan W, Kang Z X, et al. Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes[J]. Chemical Engineering Journal, 2023, 465: 142873. |
| 45 | Kubota K, Pang Y D, Miura A, et al. Redox reactions of small organic molecules using ball milling and piezoelectric materials[J]. Science, 2019, 366(6472): 1500-1504. |
| 46 | Afshariazar F, Morsali A. The unique opportunities of mechanosynthesis in green and scalable fabrication of metal-organic frameworks[J]. Journal of Materials Chemistry A, 2022, 10(29): 15332-15369. |
| 47 | Bennett T D, Cao S, Tan J C, et al. Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society, 2011, 133(37): 14546-14549. |
| 48 | Švegovec M, Škrjanc A, Krajnc A, et al. Green synthesis approaches toward preparation of ZIF-76 and its thermal behavior[J]. Crystal Growth & Design, 2023, 23(5): 3754-3760. |
| 49 | Ren H, Wei T X. Electrochemical synthesis methods of metal-organic frameworks and their environmental analysis applications: a review[J]. ChemElectroChem, 2022, 9(13): e202200196. |
| 50 | Li W J, Tu M, Cao R, et al. Metal-organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives[J]. Journal of Materials Chemistry A, 2016, 4(32): 12356-12369. |
| 51 | Xie D S, Tan D X, Xue Z H, et al. Cathodic deposition-assisted synthesis of thin glass MOF films for high-performance gas separations[J]. Angewandte Chemie International Edition, 2024, 136(27): e202401817. |
| 52 | Xue W L, Kolodzeiski P, Aucharova H, et al. Highly porous metal-organic framework liquids and glasses via a solvent-assisted linker exchange strategy of ZIF-8[J]. Nature Communications, 2024, 15(1): 4420. |
| 53 | Xue W L, Li G Q, Chen H, et al. Melt-quenched glass formation of a family of metal-carboxylate frameworks[J]. Nature Communications, 2024, 15(1): 2040. |
| 54 | Kim M, Lee H S, Seo D H, et al. Melt-quenched carboxylate metal-organic framework glasses[J]. Nature Communications, 2024, 15(1): 1174. |
| 55 | Luo W J, Li F, Liu J, et al. Advanced HOFs-based membranes for gas separation: opportunities and challenges[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113987. |
| 56 | Arshad N, Batool S R, Razzaq S, et al. Recent advancements in polyurethane-based membranes for gas separation[J]. Environmental Research, 2024, 252: 118953. |
| 57 | Li Z C, Wang Y M, Zhang J X, et al. A short review of advances in MOF glass membranes for gas adsorption and separation[J]. Membranes, 2024, 14(5): 99. |
| 58 | Su W J, Xiang Y Y, Dai Y Y, et al. Challenges and recent advances in MOF-based gas separation membranes[J]. Chemical Communications, 2024, 60(56): 7124-7135. |
| 59 | Hsu C H, Lin C Y, Wang H Y, et al. Single-file diffusion and its influence on membrane gas separation: a case study on UTSA-280[J]. Journal of Membrane Science, 2024, 706: 122920. |
| 60 | Hu X, Li Z Y, Li J B, et al. Honeycomb ZIF-67 membrane with hierarchical channels for high-permeance gas separation[J]. Small, 2025, 21(7): 2406693. |
| 61 | Lin R J, Chai M, Zhou Y H, et al. Metal-organic framework glass composites[J]. Chemical Society Reviews, 2023, 52(13): 4149-4172. |
| 62 | 莫滨宇, 张雅馨, 刘国振, 等. 面向一/二价离子分离的金属有机骨架膜研究进展[J]. 化工学报, 2024, 75(4): 1183-1197. |
| Mo B Y, Zhang Y X, Liu G Z, et al. Recent progress of metal-organic framework membranes for mono/divalent ions separation[J]. CIESC Journal, 2024, 75(4): 1183-1197. | |
| 63 | Wang Y H, Jin D H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369. |
| 64 | Xia H N, Jin H, Zhang Y T, et al. A long-lasting TIF-4 MOF glass membrane for selective CO2 separation[J]. Journal of Membrane Science, 2022, 655: 120611. |
| 65 | Stone D M, Morgan S E, Abdelmigeed M O, et al. Control of ZIF-62 and agZIF-62 film thickness within asymmetric tubular supports through pressure and dose time variation of atomic layer deposition[J]. Small, 2024, 20(27): 2307202. |
| 66 | Zhao Z J, Ding L, Mundstock A, et al. Preparation of ZIF-62 polycrystalline and glass membranes for helium separation[J]. Journal of Membrane Science, 2024, 700: 122677. |
| 67 | Tuffnell J M, Ashling C W, Hou J W, et al. Novel metal-organic framework materials: blends, liquids, glasses and crystal-glass composites[J]. Chemical Communications, 2019, 55(60): 8705-8715. |
| 68 | Bin Zulkifli M Y, Su K, Chen R Q, et al. Future perspective on MOF glass composite thin films as selective and functional membranes for molecular separation[J]. Advanced Membranes, 2022, 2: 100036. |
| 69 | Yang Z B, Belmabkhout Y, McHugh L N, et al. ZIF-62 glass foam self-supported membranes to address CH4/N2 separations[J]. Nature Materials, 2023, 22: 888-894. |
| 70 | Longley L, Collins S M, Zhou C, et al. Liquid phase blending of metal-organic frameworks[J]. Nature Communications, 2018, 9(1): 2135. |
| 71 | 耿秀梅, 张逢, 张翔, 等. 用于CO2分离的Pebax基混合基质膜稳定性研究进展[J]. 化工进展, 2024, 43(9): 4996-5012. |
| Geng X M, Zhang F, Zhang X, et al. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012. | |
| 72 | 高逸飞, 易群, 齐凯, 等. MOFs基膜材料的研究现状及其在H2/CH4分离中的应用[J]. 化工进展, 2022, 41(12): 6395-6407. |
| Gao Y F, Yi Q, Qi K, et al. Research status and application in H2/CH4 separation of MOFs-based membrane[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. | |
| 73 | Liu Y T, Wu H, Li R L, et al. MOF-COF “alloy” membranes for efficient propylene/propane separation[J]. Advanced Materials, 2022, 34(24): 2201423. |
| 74 | Chen J J, Wu X L, Chen C C, et al. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation[J]. Journal of Membrane Science, 2022, 648: 120382. |
| 75 | Ao D, Yang Z B, Qiao Z H, et al. Metal-organic framework crystal-glass composite membranes with preferential permeation of ethane[J]. Angewandte Chemie International Edition, 2023, 62(28): e202304535. |
| 76 | Li D D, Yang Z B, Yang L X, et al. Self-supported flux melted glass membranes fabricated by melt quenching for gas separation[J]. Journal of Membrane Science, 2024, 695: 122492. |
| 77 | Ao D, Yang Z B, Chen A B, et al. Effective C4 separation by zeolite metal-organic framework composite membranes[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401118. |
| 78 | Lin R J, Hou J W, Li M R, et al. Interfacial engineering of a polymer-MOF composite by in situ vitrification[J]. Chemical Communications, 2020, 56(25): 3609-3612. |
| 79 | Mubashir M, Dumée L F, Fong Y Y, et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation[J]. Journal of Hazardous Materials, 2021, 415: 125639. |
| 80 | Li N, Ma C, Li D D, et al. In-situ glass transition of ZIF-62 based mixed matrix membranes for enhancing H2 fast separation[J]. Separation and Purification Technology, 2025, 353: 128500. |
| [1] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [2] | Bing ZHANG, Jianhui LI, Xinrong MA, Yang CHEN, Jinping LI, Libo LI. Research progress of MOF preparation by steam-assisted method [J]. CIESC Journal, 2025, 76(5): 2026-2041. |
| [3] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| [4] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [5] | Haiqian ZHAO, Fang CHEN, Tao CHEN, Jianwei GUO, Wenjing LIN, Chufen YANG. Folate-modified pH-responsive copolymer mixed micelles for anticancer drug delivery [J]. CIESC Journal, 2025, 76(4): 1702-1710. |
| [6] | Xiaokun WANG, Zelin LIAO, Junliang WU, Xingyu CHEN, Yifei YU, Gaohong HE, Xiujuan ZHANG. Preparation and performance evaluation of LDH-PTFPMS/PEI composite membrane for improving blood compatibility and CO2 transfer [J]. CIESC Journal, 2025, 76(4): 1800-1808. |
| [7] | Heng ZHANG, Dianlu KUI, Hong CHANG, Zhigang ZHAN. Effect of mechanical stress on the interfacial transport properties of gas diffusion layers [J]. CIESC Journal, 2025, 76(2): 637-644. |
| [8] | Yanjiao XU, Linjin LOU, Zhuoqin FAN, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on modification technology of methylaluminoxane [J]. CIESC Journal, 2025, 76(2): 454-465. |
| [9] | Xin YING, Miao DU, Pengju PAN, Guorong SHAN. Synthesis, structure and properties of high refrective index polythiourethane [J]. CIESC Journal, 2025, 76(2): 858-867. |
| [10] | Xinyuan ZHANG, Chengxiang HE, Yating LI, Chunying ZHU, Youguang MA, Taotao FU. Advances in simulation and experimental research methods for mass transfer of liquid-liquid heterogeneous system in microchannels [J]. CIESC Journal, 2025, 76(2): 484-503. |
| [11] | Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis [J]. CIESC Journal, 2025, 76(2): 825-834. |
| [12] | Hanbin WANG, Shuai HU, Fenglei BI, Junsen LI, Laibin HE. Desorption performance analysis of a metal hydride reactor with novel corrugated fins based on finite element method [J]. CIESC Journal, 2025, 76(1): 221-230. |
| [13] | Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media [J]. CIESC Journal, 2025, 76(1): 161-172. |
| [14] | Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces [J]. CIESC Journal, 2024, 75(S1): 283-291. |
| [15] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||