CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4903-4912.DOI: 10.11949/0438-1157.20250076
• Energy and environmental engineering • Previous Articles Next Articles
Hui LIU1(
), Jia WANG1, Jing ZHAO1,2, Chuanchang LI1,2, Youfu LYU1,2(
)
Received:2025-01-17
Revised:2025-03-03
Online:2025-10-23
Published:2025-09-25
Contact:
Youfu LYU
刘辉1(
), 王佳1, 赵晶1,2, 李传常1,2, 吕又付1,2(
)
通讯作者:
吕又付
作者简介:刘辉(1999—),男,硕士研究生,15115452050@163.com
基金资助:CLC Number:
Hui LIU, Jia WANG, Jing ZHAO, Chuanchang LI, Youfu LYU. Research on heat generation behavior and capacity attenuation of large capacity energy storage battery[J]. CIESC Journal, 2025, 76(9): 4903-4912.
刘辉, 王佳, 赵晶, 李传常, 吕又付. 大容量储能电池产热行为特性及容量衰减研究[J]. 化工学报, 2025, 76(9): 4903-4912.
Add to citation manager EndNote|Ris|BibTeX
| 参数名称 | 规格 |
|---|---|
| 额定容量/Ah | 280 |
| 电池质量/kg | 5.34 |
| 标称电压/V | 3.2 |
| 充电截止电压/V | 3.65 |
| 放电截止电压/V | 2.0 |
| 电池尺寸/(mm×mm×mm) | 173×71×204 |
Table 1 Main parameters of 280 Ah energy storage battery
| 参数名称 | 规格 |
|---|---|
| 额定容量/Ah | 280 |
| 电池质量/kg | 5.34 |
| 标称电压/V | 3.2 |
| 充电截止电压/V | 3.65 |
| 放电截止电压/V | 2.0 |
| 电池尺寸/(mm×mm×mm) | 173×71×204 |
Fig.9 The DC internal resistance, ohmic internal resistance and polarization internal resistance of the battery change curve with the number of cycles
| [1] | 陈永翀. 储能未来的技术发展路径[J]. 能源, 2019(1): 84-85. |
| Chen Y C. Technical development path of energy storage in the future[J]. Energy, 2019(1): 84-85. | |
| [2] | 陈永翀, 冯彩梅, 刘勇. 双碳背景下中国储新比的发展趋势[J]. 能源, 2021(8): 41-45. |
| Chen Y C, Feng C M, Liu Y. The development trend of China's reserve-to-fresh ratio under the background of double carbon[J]. Energy, 2021(8): 41-45. | |
| [3] | 顾正建, 陶倩艺, 杨智皋, 等. 磷酸铁锂与三元锂离子电池加热下的热失控行为[J]. 电池, 2024, 54(4): 513-518. |
| Gu Z J, Tao Q Y, Yang Z G, et al. Thermal runaway behavior of LiFePO4 and ternary Li-ion batteries under heating[J]. Battery Bimonthly, 2024, 54(4): 513-518. | |
| [4] | Tete P R, Gupta M M, Joshi S S. Developments in battery thermal management systems for electric vehicles: a technical review[J]. Journal of Energy Storage, 2021, 35: 102255. |
| [5] | Wang H M, Shi W J, Hu F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: 120072. |
| [6] | 杨佳兴, 张恒运, 徐屹东. 基于电化学-热耦合模型的锂离子电池组件产热分析[J]. 储能科学与技术, 2023, 12(8): 2615-2625. |
| Yang J X, Zhang H Y, Xu Y D. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model[J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. | |
| [7] | 刘邦金, 汪林威, 吴月月, 等. 锂离子电池热管理研究进展[J]. 化工学报, 2024, 75(12): 4413-4431. |
| Liu B J, Wang L W, Wu Y Y, et al. Advances in thermal management of lithium-ion batteries[J]. CIESC Journal, 2024, 75(12): 4413-4431. | |
| [8] | Hossain Ahmed S, Kang X S, Bade Shrestha S O. Effects of temperature on internal resistances of lithium-ion batteries[J]. Journal of Energy Resources Technology, 2015, 137(3): 031901. |
| [9] | Situ W F, Yang X Q, Li X X, et al. Effect of high temperature environment on the performance of LiNi0.5Co0.2Mn0.3O2 battery[J]. International Journal of Heat and Mass Transfer, 2017, 104: 743-748. |
| [10] | Sarkar S, Amin M T, El-Halwagi M M, et al. Thermal behavior of LiFePO4 battery at faster C-rates and lower ambient temperatures[J]. Process Safety and Environmental Protection, 2024, 186: 118-133. |
| [11] | Lin C J, Xu S C, Liu J L. Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8375-8384. |
| [12] | Liu S B, Zhang H Y, Xu X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: 102446. |
| [13] | Ziat K, Louahlia H, Petrone R, et al. Experimental investigation on the impact of the battery charging/discharging current ratio on the operating temperature and heat generation[J]. International Journal of Energy Research, 2021, 45(11): 16754-16768. |
| [14] | Lyu P Z, Huo Y T, Qu Z G, et al. Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage[J]. Applied Thermal Engineering, 2020, 166: 114749. |
| [15] | Sheng L, Su L, Zhang H Y, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, 2019, 180: 724-732. |
| [16] | Bai Y, Li L M, Li Y, et al. Reversible and irreversible heat generation of NCA/Si-C pouch cell during electrochemical energy-storage process[J]. Journal of Energy Chemistry, 2019, 29: 95-102. |
| [17] | 徐文军. 锂离子电池充放电循环过程的热行为及液冷策略模拟研究[D]. 合肥: 中国科学技术大学, 2020. |
| Xu W J. Simulation study on thermal behavior and liquid cooling strategy of lithium-ion battery during charge-discharge cycle[D]. Hefei: University of Science and Technology of China, 2020. | |
| [18] | Huang Y X, Lai H X. Effects of discharge rate on electrochemical and thermal characteristics of LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 157: 113744. |
| [19] | Ji H S, Luo T B, Dai L M, et al. Numerical investigation on the polarization and thermal characteristics of LiFePO4-based batteries during charging process[J]. Applied Thermal Engineering, 2022, 214: 118709. |
| [20] | Liu J L, Duan Q L, Ma M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. |
| [21] | Meda U S, Lal L, Sushantha M, et al. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent advances[J]. Journal of Energy Storage, 2022, 47: 103564. |
| [22] | 闻文, 王慧艳, 周静红, 等. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376. |
| Wen W, Wang H Y, Zhou J H, et al. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth[J]. CIESC Journal, 2024, 75(1): 366-376. | |
| [23] | Capkova D, Knap V, Fedorkova A S, et al. Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium-sulfur pouch cells during calendar aging[J]. Applied Energy, 2023, 332: 120543. |
| [24] | Lewerenz M, Münnix J, Schmalstieg J, et al. Systematic aging of commercial L i F e P O 4 graphite cylindrical cells including a theory explaining rise of capacity during aging[J]. Journal of Power Sources, 2017, 345: 254-263. |
| [25] | Xiong D J, Petibon R, Nie M, et al. Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage[J]. Journal of the Electrochemical Society, 2016, 163(3): A546-A551. |
| [26] | Rauhala T, Jalkanen K, Romann T, et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study[J]. Journal of Energy Storage, 2018, 20: 344-356. |
| [27] | Cai Z H, Mendoza S, Goodman J, et al. The influence of cycling, temperature, and electrode gapping on the safety of prismatic lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160515. |
| [28] | You H Z, Dai H F, Li L Z. The aging law of low temperature charging of lithium-ion battery[C]//SAE Technical Paper Series. Shanghai, China: Tongji University, 2019. |
| [29] | Diao W P, Saxena S, Pecht M. Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells[J]. Journal of Power Sources, 2019, 435: 226830. |
| [30] | 黄海宁. 磷酸铁锂电池循环寿命衰减和寿命预测[J]. 电源技术, 2022, 46(4): 376-379. |
| Huang H N. Cycle life fading of LiFePO4 lithium-ion battery and its life prediction[J]. Chinese Journal of Power Sources, 2022, 46(4): 376-379. |
| [1] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
| [2] | ZOU Huiming, WANG Yinglin, LI Xuan, TANG Mingsheng, TIAN Changqing. R290 linear compressor under variable conditions [J]. CIESC Journal, 2021, 72(S1): 342-347. |
| [3] | Xuming LIANG, Yongchao SHEN, Dong WEI, Qian GUO, Zhi GAO. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics [J]. CIESC Journal, 2021, 72(8): 4361-4370. |
| [4] | Lixia KANG, Chenlu MA, Yongzhong LIU. Operation optimization of modularized energy storage of retired batteries in hybrid power systems [J]. CIESC Journal, 2019, 70(2): 599-606. |
| [5] | WANG Zhen, WEI Dong, YE Hongji. Method for diagnosing state of hydrothermal management of fuel cell stack based on frequency secant angle [J]. CIESC Journal, 2018, 69(10): 4371-4377. |
| [6] | ZHANG Hongguang, YANG Yuxin, MENG Fanxiao, ZHAO Rui, TIAN Yaming, LIU Yi. Running performance of working fluid pump for organic Rankine cycle system [J]. CIESC Journal, 2017, 68(9): 3573-3579. |
| [7] | JI Yuxin,ZHU Meihong,CHEN Hui,NI Weimin,JIN Rencun. Research progress of high-loaded ANAMMOX reactors [J]. Chemical Industry and Engineering Progree, 2013, 32(08): 1914-1920. |
| [8] | PENG Xudong,ZHANG Yuelin, BAI Shaoxian,LI Jiyun,SHENG Song’en. Effect of rotational speed and sealing medium pressure on optimization of groove geometric parameters of a T-groove dry gas face seal [J]. CIESC Journal, 2012, 63(2): 551-559. |
| [9] |
ZHAO Dongsheng,LIU Guimin,ZHAO Yanli,WU Zhaoliang . Research progress of airlift reactor [J]. , 2007, 26(6): 810-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||