CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4361-4370.DOI: 10.11949/0438-1157.20201528
• Energy and environmental engineering • Previous Articles Next Articles
Xuming LIANG(),Yongchao SHEN(),Dong WEI(),Qian GUO,Zhi GAO
Received:
2020-10-30
Revised:
2021-04-15
Online:
2021-08-05
Published:
2021-08-05
Contact:
Dong WEI
通讯作者:
卫东
作者简介:
梁旭鸣(1995—),男,硕士研究生,基金资助:
CLC Number:
Xuming LIANG, Yongchao SHEN, Dong WEI, Qian GUO, Zhi GAO. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics[J]. CIESC Journal, 2021, 72(8): 4361-4370.
梁旭鸣, 沈永超, 卫东, 郭倩, 高志. 基于直流内阻和交流阻抗特性的铝空气电池输出特性分析[J]. 化工学报, 2021, 72(8): 4361-4370.
Add to citation manager EndNote|Ris|BibTeX
参数 | 取值 | 参数 | 取值 | 参数 | 取值 |
---|---|---|---|---|---|
α | 0.015 | S | 1 cm2 | c | 1~5 mol/L |
T0 | 293 K | L | 1 cm | n | 4 |
δ | 20 μm | F | 96487 C/mol | 0.5 | |
T | 293~333 K | R | 8.314 J/(K·mol) | D0 | 2.2×10-9 m2/s |
Table 1 Model simulation parameters
参数 | 取值 | 参数 | 取值 | 参数 | 取值 |
---|---|---|---|---|---|
α | 0.015 | S | 1 cm2 | c | 1~5 mol/L |
T0 | 293 K | L | 1 cm | n | 4 |
δ | 20 μm | F | 96487 C/mol | 0.5 | |
T | 293~333 K | R | 8.314 J/(K·mol) | D0 | 2.2×10-9 m2/s |
1 | Mori R. Recent developments for aluminum-air batteries[J]. Electrochemical Energy Reviews, 2020, 3(2): 344-369. |
2 | Laribi S, Mammar K, Sahli Y, et al. Air supply temperature impact on the PEMFC impedance[J]. Journal of Energy Storage, 2018, 17: 327-335. |
3 | Katsoufis P, Katsaiti M, Mourelas C, et al. Study of a thin film aluminum-air battery[J]. Energies, 2020, 13(6): 1447. |
4 | 刘族, 赵军红, 蔡艳平, 等. 铝空气电池的设计与放电性能研究[J]. 电源技术, 2017, 41(9): 1306-1308, 1318. |
Liu Z, Zhao J H, Cai Y P, et al. Design and research on discharge performance for aluminum-air battery[J]. Chinese Journal of Power Sources, 2017, 41(9): 1306-1308, 1318. | |
5 | Han Y F, Ren J M, Fu C P, et al. Electrochemical performance of aluminum anodes with different grain sizes for Al-air batteries[J]. Journal of the Electrochemical Society, 2020, 167(4): 040514. |
6 | Deyab M A. Effect of nonionic surfactant as an electrolyte additive on the performance of aluminum-air battery[J]. Journal of Power Sources, 2019, 412: 520-526. |
7 | Nie Y J, Gao J X, Wang E D, et al. An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells[J]. Electrochimica Acta, 2017, 248: 478-485. |
8 | 沈虹宁, 方奕栋, 胡天恩, 等. 低温下电解液浓度对铝空气电池的影响[J]. 电池, 2019, 49(6): 470-472. |
Shen H N, Fang Y D, Hu T E, et al. Effect of electrolyte concentration on aluminum-air battery at low temperature[J]. Battery Bimonthly, 2019, 49(6): 470-472. | |
9 | Hu T, Li K, Fang Y D, et al. Experimental research on temperature rise and electric characteristics of aluminum air battery under open-circuit condition for new energy vehicle[J]. International Journal of Energy Research, 2019, 43(3): 1099-1110. |
10 | Wen H J, Liu Z S, Qiao J, et al. High energy efficiency and high power density aluminum‐air flow battery[J]. International Journal of Energy Research, 2020, 44(9): 7568-7579. |
11 | Ilyukhina A V, Zhuk A Z, Kleymenov B V, et al. The influence of temperature and composition on the operation of Al anodes for aluminum-air batteries[J]. Fuel Cells, 2016, 16(3): 384-394. |
12 | Zhao R J, Xie J D, Wen H J, et al. Performance modeling and parameter sensitivity analyses of an aluminum-air battery with dual electrolyte structure[J]. Journal of Energy Storage, 2020, 32: 101696. |
13 | Yang S H, Knickle H. Modeling the performance of an aluminum-air cell[J]. Journal of Power Sources, 2003, 124(2): 572-585. |
14 | 王茹, 沈永超, 卫东, 等. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
Wang R, Shen Y C, Wei D, et al. Analysis of PEMFC water management status based on DC internal resistance and AC impedance characteristics[J]. CIESC Journal, 2020, 71(7): 3247-3257. | |
15 | 马泽. 锌空气燃料电池性能影响因素及性能衰减机理研究[D]. 北京: 清华大学, 2015. |
Ma Z. Research on the influence factor of zinc air fuel cell stack and performance degradation mechanism[D]. Beijing: Tsinghua University, 2015. | |
16 | 陈东方, 裴普成, 宋鑫, 等. 锌空燃料电池电化学阻抗等效电路模型[J]. 清华大学学报(自然科学版), 2020, 60(2): 139-146. |
Chen D F, Pei P C, Song X, et al. Electrochemical impedance equivalent circuit model for zinc-air fuel cells[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(2): 139-146. | |
17 | 杜双龙, 赖延清, 贾明, 等. 基于电化学模型的锂空气电池仿真[J]. 中国有色金属学报, 2018, 28(6): 1143-1150. |
Du S L, Lai Y Q, Jia M, et al. Simulation for lithium air batteries based on electrochemical model[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(6): 1143-1150. | |
18 | Wang Y, Wang Z, Yuan H, et al. Discharge oxide storage capacity and voltage loss in Li-air battery[J]. Electrochimica Acta, 2015, 180: 382-393. |
19 | Wang M L, Yao Y, Bi X X, et al. Optimization of oxygen electrode combined with soluble catalyst to enhance the performance of lithium-oxygen battery[J]. Energy Storage Materials, 2020, 28: 73-81. |
20 | 董缇, 彭鹏, 王亦伟, 等. 锂离子电池大电流放电过程模拟研究[J]. 化工学报, 2020, 71(8): 3710-3721. |
Dong T, Peng P, Wang Y W, et al. Simulation on lithium ion battery discharge process with large current[J]. CIESC Journal, 2020, 71(8): 3710-3721. | |
21 | 高志, 蔡慧, 卫东, 等. 水冷型PEMFC输出特性建模与仿真分析[J]. 太阳能学报, 2019, 40(5): 1472-1480. |
Gao Z, Cai H, Wei D, et al. Water-cooling PEMFC output characteristic modeling and simulation analysis[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1472-1480. | |
22 | 王振, 卫东, 叶洪吉. 基于频率正割角计算的燃料电池堆水热管理状态诊断方法[J]. 化工学报, 2018, 69(10): 4371-4377. |
Wang Z, Wei D, Ye H J. Method for diagnosing state of hydrothermal management of fuel cell stack based on frequency secant angle[J]. CIESC Journal, 2018, 69(10): 4371-4377. | |
23 | Russo L, Sorrentino M, Polverino P, et al. Application of Buckingham π theorem for scaling-up oriented fast modelling of proton exchange membrane fuel cell impedance[J]. Journal of Power Sources, 2017, 353: 277-286. |
24 | Pan M Z, Li C, Liao J Y, et al. Design and modeling of PEM fuel cell based on different flow fields[J]. Energy, 2020, 207: 118331. |
25 | Xie J D, He P, Zhao R J, et al. Numerical modeling and analysis of the performance of an aluminum-air battery with alkaline electrolyte[J]. Processes, 2020, 8(6): 658. |
26 | Lan T, Strunz K. Modeling of multi-physics transients in PEM fuel cells using equivalent circuits for consistent representation of electric, pneumatic, and thermal quantities[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105803. |
27 | Jiang H L, Xu L F, Struchtrup H, et al. Modeling of fuel cell cold start and dimension reduction simplification method[J]. Journal of the Electrochemical Society, 2020, 167(4): 044501. |
28 | Xu L, Cui X B, Zhang Y, et al. Measurement and correlation of electrical conductivity of ionic liquid [EMIM][DCA] in propylene carbonate and γ-butyrolactone[J]. Electrochimica Acta, 2015, 174: 900-907. |
29 | 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法[J]. 物理学报, 2017, 66(23): 312-322. |
Pang H. Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model[J]. Acta Physica Sinica, 2017, 66(23): 312-322. | |
30 | 克里斯·莫尼卡塔斯. 大中型储能电池的研究进展[M]. 北京: 机械工业出版社, 2018. |
Monicatas C. Research Progress of Large and Medium Sized Energy Storage Batteries [M]. Beijing: China Machine Press, 2018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||