CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 599-606.DOI: 10.11949/j.issn.0438-1157.20181158
• Process system engineering • Previous Articles Next Articles
Lixia KANG1(
),Chenlu MA1,Yongzhong LIU1,2,3(
)
Received:2018-10-08
Revised:2018-12-06
Online:2019-02-05
Published:2019-02-05
Contact:
Yongzhong LIU
通讯作者:
刘永忠
作者简介:<named-content content-type="corresp-name">康丽霞</named-content>(1989—),女,博士,讲师,<email>lx_kang@xjtu.edu.cn</email>|刘永忠(1968—),男,博士,教授,<email>yzliu@xjtu.edu.cn</email>
基金资助:CLC Number:
Lixia KANG, Chenlu MA, Yongzhong LIU. Operation optimization of modularized energy storage of retired batteries in hybrid power systems[J]. CIESC Journal, 2019, 70(2): 599-606.
康丽霞, 麻晨露, 刘永忠. 混合供电系统中退役电池的模块化储能操作优化[J]. 化工学报, 2019, 70(2): 599-606.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181158
| Parameter | A | B | C |
|---|---|---|---|
| initial effective capacity, C max/(kW·h) | 180 | 180 | 180 |
| rated capacity, C a/(kW·h) | 225 | 257 | 300 |
| residual number of cycles, E | 2,000 | 1,400 | 850 |
| capital cost of battery/(CNY·(kW·h)-1) | 1,270 | 915 | 585 |
| cost efficient for battery maintenance/ (CNY·(kW·h)-1) | 0.02 | 0.03 | 0.04 |
| cost efficient for battery regrouping/ (CNY·(kW·h)-1) | 60 | 60 | 60 |
| battery cost/CNY | 264452 | 194452 | 125909 |
Table 1 Parameters of batteries for energy storage
| Parameter | A | B | C |
|---|---|---|---|
| initial effective capacity, C max/(kW·h) | 180 | 180 | 180 |
| rated capacity, C a/(kW·h) | 225 | 257 | 300 |
| residual number of cycles, E | 2,000 | 1,400 | 850 |
| capital cost of battery/(CNY·(kW·h)-1) | 1,270 | 915 | 585 |
| cost efficient for battery maintenance/ (CNY·(kW·h)-1) | 0.02 | 0.03 | 0.04 |
| cost efficient for battery regrouping/ (CNY·(kW·h)-1) | 60 | 60 | 60 |
| battery cost/CNY | 264452 | 194452 | 125909 |
| Capacity fading model | Retired battery | Power battery | |||
|---|---|---|---|---|---|
| A | B | C | A/B/C | A/B/C | |
| initial capacity/(kW·h) | 540 | 540 | 540 | 180/180/180 | 180/180/180 |
| rated capacity/(kW·h) | 675 | 771 | 900 | 225/257/300 | 225/257/300 |
| depletion cost of batteries/CNY | 676 | 695 | 646 | 413/168/97 | 476/215/59 |
| electricity cost/CNY | 2090 | 2112 | 2217 | 2117 | 1769 |
| TAC/CNY | 2766 | 2807 | 2863 | 2795 | 2519 |
Table 2 TAC of different energy storage systems
| Capacity fading model | Retired battery | Power battery | |||
|---|---|---|---|---|---|
| A | B | C | A/B/C | A/B/C | |
| initial capacity/(kW·h) | 540 | 540 | 540 | 180/180/180 | 180/180/180 |
| rated capacity/(kW·h) | 675 | 771 | 900 | 225/257/300 | 225/257/300 |
| depletion cost of batteries/CNY | 676 | 695 | 646 | 413/168/97 | 476/215/59 |
| electricity cost/CNY | 2090 | 2112 | 2217 | 2117 | 1769 |
| TAC/CNY | 2766 | 2807 | 2863 | 2795 | 2519 |
| a | ——裕度因子 |
|---|---|
| Bn (t) | ——电池组剩余电量,kW·h |
| C | ——电池损耗和电网用电费用,CNY |
| Ca , n | ——电池组额定容量,kW·h |
| Clo , n | ——电池组寿命损耗容量,kW·h |
| | ——电池的初始有效容量,kW·h |
| C-rate | ——电池组充放电倍率 |
| cap(k) | ——k个循环后电池的容量保持率,% |
| capl(k) | ——k个循环后电池的容量衰退率,% |
| d | ——储能电池的放电深度,% |
| di , n | ——退役电池组的放电深度,% |
| E a | ——活化能常数,78.06 kmol·J-1 |
| Ei , n | ——电池直至失效相应的循环数 |
| Fb , n (t) | ——电池组t时段内的损耗费用,CNY |
| fC - rate | ——特定循环下的C-rate因子 |
| fd | ——对应的d下的放电深度因子 |
| fsto | ——日历容量衰退,% |
| ftem | ——温度引起的容量衰退加速因子 |
| g(t) | ——电网电价,CNY·kW-1 |
| Ha , n | ——电池组单位容量价格,CNY·kW·h-1 |
| Hb , n | ——电池组年运行维护成本,CNY |
| Hc , n | ——电池组总寿命折合费用,CNY |
| H new | ——常规储能电池价格,CNY·kW·h-1 |
| i | ——每个d对应的循环失效曲线 |
| K | ——储能电池累计循环次数 |
| k(t) | ——电池t时刻的循环数 |
| k b, n | ——电池组年运行维护系数 |
| m(t) | ——光伏发电在t时刻的利用率 |
| N | ——储能系统中退役电池组的组数 |
| Pgl (t) | ——电网t时刻向用户供电的功率,kW |
| PL (t) | ——用户t时刻的用电需求,kW |
| | ——电池组t时刻的功率变化,kW |
| Ppl (t) | ——系统t时刻向用户供电的功率,kW |
| Ppv (t) | ——光伏电池t时刻的发电量,kW |
| | ——电池组t时刻的充电功率,kW |
| | ——电池组t时刻的放电功率,kW |
| | ——电池组的充电功率下限,kW |
| | ——电池组的放电功率下限,kW |
| | ——电池组的额定功率,kW |
| QK , n (t) | ——K个循环电池累积的容量衰退,% |
| R | ——理想气体常数,8.314 J·mol-1·K-1 |
| Sn | ——电池组初始的容量保持率 |
| SOCmin, n | ——电池组最小的荷电状态 |
| T | ——系统运行周期集合,d |
| Tamb | ——环境温度,K |
| T ref | ——参考温度,K |
| Ya , n | ——退役电池组的剩余寿命 |
| Y new | ——常规储能电池的寿命 |
| z(t) | ——二元变量 |
| a | ——裕度因子 |
|---|---|
| Bn (t) | ——电池组剩余电量,kW·h |
| C | ——电池损耗和电网用电费用,CNY |
| Ca , n | ——电池组额定容量,kW·h |
| Clo , n | ——电池组寿命损耗容量,kW·h |
| | ——电池的初始有效容量,kW·h |
| C-rate | ——电池组充放电倍率 |
| cap(k) | ——k个循环后电池的容量保持率,% |
| capl(k) | ——k个循环后电池的容量衰退率,% |
| d | ——储能电池的放电深度,% |
| di , n | ——退役电池组的放电深度,% |
| E a | ——活化能常数,78.06 kmol·J-1 |
| Ei , n | ——电池直至失效相应的循环数 |
| Fb , n (t) | ——电池组t时段内的损耗费用,CNY |
| fC - rate | ——特定循环下的C-rate因子 |
| fd | ——对应的d下的放电深度因子 |
| fsto | ——日历容量衰退,% |
| ftem | ——温度引起的容量衰退加速因子 |
| g(t) | ——电网电价,CNY·kW-1 |
| Ha , n | ——电池组单位容量价格,CNY·kW·h-1 |
| Hb , n | ——电池组年运行维护成本,CNY |
| Hc , n | ——电池组总寿命折合费用,CNY |
| H new | ——常规储能电池价格,CNY·kW·h-1 |
| i | ——每个d对应的循环失效曲线 |
| K | ——储能电池累计循环次数 |
| k(t) | ——电池t时刻的循环数 |
| k b, n | ——电池组年运行维护系数 |
| m(t) | ——光伏发电在t时刻的利用率 |
| N | ——储能系统中退役电池组的组数 |
| Pgl (t) | ——电网t时刻向用户供电的功率,kW |
| PL (t) | ——用户t时刻的用电需求,kW |
| | ——电池组t时刻的功率变化,kW |
| Ppl (t) | ——系统t时刻向用户供电的功率,kW |
| Ppv (t) | ——光伏电池t时刻的发电量,kW |
| | ——电池组t时刻的充电功率,kW |
| | ——电池组t时刻的放电功率,kW |
| | ——电池组的充电功率下限,kW |
| | ——电池组的放电功率下限,kW |
| | ——电池组的额定功率,kW |
| QK , n (t) | ——K个循环电池累积的容量衰退,% |
| R | ——理想气体常数,8.314 J·mol-1·K-1 |
| Sn | ——电池组初始的容量保持率 |
| SOCmin, n | ——电池组最小的荷电状态 |
| T | ——系统运行周期集合,d |
| Tamb | ——环境温度,K |
| T ref | ——参考温度,K |
| Ya , n | ——退役电池组的剩余寿命 |
| Y new | ——常规储能电池的寿命 |
| z(t) | ——二元变量 |
| 1 | Zhang J , Cho H , Luck R , et al . Integrated photovoltaic and battery energy storage (PV-BES) systems: an analysis of existing financial incentive policies in the US[J]. Applied Energy, 2018, 212: 895-908. |
| 2 | Vivas F J , De las Heras A , Segura F , et al . A review of energy management strategies for renewable hybrid energy systems with hydrogen backup[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 126-155. |
| 3 | Liu W H , Wan Alwi S R , Hashim H , et al . Sizing of hybrid power system with varying current type using numerical probabilistic approach[J]. Applied Energy, 2016, 184: 1364-1373. |
| 4 | Heymans C , Walker S B , Young S B , et al . Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling[J]. Energy Policy, 2014, 71: 22-30. |
| 5 | Tong S , Fung T , Klein M P , et al . Demonstration of reusing electric vehicle battery for solar energy storage and demand side management[J]. Journal of Energy Storage, 2017, 11: 200-210. |
| 6 | Wang C , Chen B , Yu Y , et al . Carbon footprint analysis of lithium ion secondary battery industry: two case studies from China[J]. Journal of Cleaner Production, 2017, 163: 241-251. |
| 7 | Casals L C , García B A , Aguesse F , et al . Second life of electric vehicle batteries: relation between materials degradation and environmental impact[J]. The International Journal of Life Cycle Assessment, 2017, 22: 82-93. |
| 8 | Ahmadi L , Young S B , Fowler M , et al . A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems[J]. The International Journal of Life Cycle Assessment, 2017, 22: 111-124. |
| 9 | Hegazy O , Monem M A , Lataire P , et al . Modeling and analysis of a hybrid PV/second-life battery topology based fast DC-charging systems for electric vehicles [C]// EPE'15 ECCE-Europe, Switzerland: IEEE, 2015. |
| 10 | Liu N , Chen Z , Liu J , et al . Multi-objective optimization for component capacity of the photovoltaic-based battery switch stations: towards benefits of economy and environment [J]. Energy, 2014, 64: 779-792. |
| 11 | 刘念, 唐霄, 段帅, 等 . 考虑动力电池梯次利用的光伏换电站容量优化配置方法[J]. 中国电机工程学报, 2013, 33(4): 34-44. |
| Liu N , Tang X , Duan S , et al . Capacity optimization method for PV-based battery swapping stations considering second-use of electric vehicle batteries[J]. Proceedings of CSEE, 2013, 33(4): 34-44. | |
| 12 | Park J , Appiah W A , Byun S , et al . Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries[J]. Journal of Power Sources, 2017, 365: 257-265. |
| 13 | Saez-De-Ibarra A , Martinez-Laserna E , Stroe D I , et al . Sizing study of second life Li-ion batteries for enhancing renewable energy grid integration[J]. IEEE Transactions on Industry Applications, 2016, 52: 4999-5008. |
| 14 | Günther S , Bensmann A , Hanke-Rauschenbach R . Theoretical dimensioning and sizing limits of hybrid energy storage systems[J]. Applied Energy, 2018, 210: 127-137. |
| 15 | Jacob A S , Banerjee R , Ghosh P C . Sizing of hybrid energy storage system for a PV based microgrid through design space approach[J]. Applied Energy, 2018, 212: 640-653. |
| 16 | Bigdeli N . Optimal management of hybrid PV/fuel cell/battery power system: a comparison of optimal hybrid approaches[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 377-393. |
| 17 | Casals L C , García B A . Aging model for re-used electric vehicle batteries in second life stationary applications[C]// Project Management and Engineering Research: AEIPRO 2016. Switzerland: Springer International Publishing, 2017: 139-151. |
| 18 | Gandhi O , Rodríguez-Gallegos C D , Zhang W , et al . Economic and technical analysis of reactive power provision from distributed energy resources in microgrids[J]. Applied Energy, 2017, 210: 827-841. |
| 19 | Casals L C , García B A . Second-life batteries on a gas turbine power plant to provide area regulation services[J]. Batteries, 2017, 3(1): 1-14. |
| 20 | Uddin K , Jackson T , Widanage W D , et al . On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system[J]. Energy, 2017, 133: 710-722. |
| 21 | Fotouhi A , Auger D J , Propp K , et al . A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur[J]. Renewable & Sustainable Energy Reviews, 2016, 56: 1008-1021. |
| 22 | Mamun A A , Narayanan I , Wang D , et al . Multi-objective optimization to minimize battery degradation and electricity cost for demand response in datacenters[C]// ASME 2015 Dynamic Systems and Control Conference. New York: Amer. Soc. Mechanical Engineers, 2015. |
| 23 | Sarasketa-Zabala E , Gandiaga I , Martinez-Laserna E , et al . Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions[J]. Journal of Power Sources, 2015, 275: 573-587. |
| 24 | Feng X , Gooi H B , Chen S . Capacity fade-based energy management for lithium-ion batteries used in PV systems[J]. Electr. Power Syst. Res., 2015, 129: 150-159. |
| 25 | Long L , Bauer P . Practical capacity fading model for Li-ion battery cells in electric vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28: 5910-5918. |
| 26 | Debnath U K , Ahmad I , Habibi D . Quantifying economic benefits of second life batteries of gridable vehicles in the smart grid[J]. International Journal of Electrical Power & Energy Systems, 2014, 63: 577-587. |
| 27 | Yang F , Xia X . Techno-economic and environmental optimization of a household photovoltaic-battery hybrid power system within demand side management[J]. Renewable Energy, 2017, 108: 132-143. |
| 28 | Hesse H C , Martins R , Musilek P , et al . Economic optimization of component sizing for residential battery storage systems[J]. Energies, 2017, 10(7): 835. |
| 29 | Bortolini M , Gamberi M , Graziani A . Technical and economic design of photovoltaic and battery energy storage system[J]. Energy Conversion and Management, 2014, 86: 81-92. |
| 30 | Neubauer J S , Wood E , Pesaran A . A second life for electric vehicle batteries: answering questions on battery degradation and value[J]. SAE International Journal of Materials & Manufacturing, 2015, 8(2): 544-553. |
| [1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
| [2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
| [3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
| [4] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
| [5] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
| [6] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
| [7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
| [8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
| [9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
| [10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
| [11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
| [12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
| [13] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
| [14] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
| [15] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||