CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4824-4837.DOI: 10.11949/0438-1157.20250295
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jinqi HU1,2(
), Chunhua MIN1,2(
), Xiaolong LI1,2, Yuanhong FAN1,2, Kun WANG1,2
Received:2025-03-24
Revised:2025-04-15
Online:2025-10-23
Published:2025-09-25
Contact:
Chunhua MIN
胡金琦1,2(
), 闵春华1,2(
), 李小龙1,2, 范元鸿1,2, 王坤1,2
通讯作者:
闵春华
作者简介:胡金琦(1997—),男,博士研究生,202211301006@stu.hebut.edu.cn
基金资助:CLC Number:
Jinqi HU, Chunhua MIN, Xiaolong LI, Yuanhong FAN, Kun WANG. Enhanced fluid chaotic mixing and heat transfer with vibrating blade coupled with flexible plate[J]. CIESC Journal, 2025, 76(9): 4824-4837.
胡金琦, 闵春华, 李小龙, 范元鸿, 王坤. 振动叶片耦合柔性板强化流体混沌混合与传热研究[J]. 化工学报, 2025, 76(9): 4824-4837.
Add to citation manager EndNote|Ris|BibTeX
| 误差来源 | 测试范围 | 最大不确定度 |
|---|---|---|
| 加热表面温度 | 40~85℃ | ±0.5℃ |
| 环境温度变化 | 27℃ | ±0.5℃ |
| 气流速度 | 1~6 m·s-1 | ±2% |
| 风机功耗 | 0.2~10 W | ±2.3% |
| 噪声水平 | 28~80 dB | ±1 dB |
Table 1 Error sources and maximum uncertainties in the experiment
| 误差来源 | 测试范围 | 最大不确定度 |
|---|---|---|
| 加热表面温度 | 40~85℃ | ±0.5℃ |
| 环境温度变化 | 27℃ | ±0.5℃ |
| 气流速度 | 1~6 m·s-1 | ±2% |
| 风机功耗 | 0.2~10 W | ±2.3% |
| 噪声水平 | 28~80 dB | ±1 dB |
| 参数 | 设置 |
|---|---|
| 压力-速度耦合 | COUPLED |
| 梯度 | 基于最小二乘 |
| 压力、动量、能量 | 二阶迎风 |
| 湍动能、比耗散率 | 二阶迎风 |
| 收敛残差 | 1×10-6 |
| 时间步长 | 1×10-4 |
Table 2 Critical settings in FLUENT
| 参数 | 设置 |
|---|---|
| 压力-速度耦合 | COUPLED |
| 梯度 | 基于最小二乘 |
| 压力、动量、能量 | 二阶迎风 |
| 湍动能、比耗散率 | 二阶迎风 |
| 收敛残差 | 1×10-6 |
| 时间步长 | 1×10-4 |
| 工况 | Tmax,av/℃ | Nuav | fav | η |
|---|---|---|---|---|
| 光滑通道 | 86.9 | 36.6 | 0.24 | 1 |
| VB | 80.7 | 48.1 | 0.31 | 1.2 |
| VBFP | 70.2 | 61.9 | 0.39 | 1.42 |
Table 3 Time-averaged results of heated surfaces for different cases
| 工况 | Tmax,av/℃ | Nuav | fav | η |
|---|---|---|---|---|
| 光滑通道 | 86.9 | 36.6 | 0.24 | 1 |
| VB | 80.7 | 48.1 | 0.31 | 1.2 |
| VBFP | 70.2 | 61.9 | 0.39 | 1.42 |
| 工况 | 气流速度/(m·s-1) | 温度/℃ | 功耗/W | 噪声/dB | ||
|---|---|---|---|---|---|---|
| 点 1 | 点 2 | 点 3 | ||||
| 光滑通道 | 3 | 82.7 | 65.8 | 65.2 | 2.2 | 55 |
| VB | 3 | 53.5 | 53.9 | 76.2 | 2.5 | 55 |
| VBFP | 3 | 54.9 | 67.5 | 37.3 | 2.6 | 55 |
| 光滑通道 | 4.7 | 67.7 | 58.7 | 58.2 | 9 | 75 |
Table 4 Temperatures, power consumption and noise levels of measurement point
| 工况 | 气流速度/(m·s-1) | 温度/℃ | 功耗/W | 噪声/dB | ||
|---|---|---|---|---|---|---|
| 点 1 | 点 2 | 点 3 | ||||
| 光滑通道 | 3 | 82.7 | 65.8 | 65.2 | 2.2 | 55 |
| VB | 3 | 53.5 | 53.9 | 76.2 | 2.5 | 55 |
| VBFP | 3 | 54.9 | 67.5 | 37.3 | 2.6 | 55 |
| 光滑通道 | 4.7 | 67.7 | 58.7 | 58.2 | 9 | 75 |
| [1] | 徐百平, 梁瑞凤, 喻慧文, 等. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
| Xu B P, Liang R F, Yu H W, et al. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder[J]. CIESC Journal, 2024, 75(3): 858-866. | |
| [2] | Yang N, Xiao Z D, Liu F, et al. Single-phase flow and different-scale mixing in a circumferentially impinging jet distributor coupled with coiled tubes[J]. Chemical Engineering Journal, 2025, 508: 160870. |
| [3] | Bartczak M, Yılmaz T, Sączek M, et al. Characterisation of litre-scale wave-mixed bioreactors using colourimetric method adaptation: mixing performance, flow regime and scale change study[J]. Chemical Engineering Journal, 2025, 509: 161295. |
| [4] | Hong H, Doh I, Jeong J, et al. Mixing enhancement with generation of effective secondary flow parallel to fluid interface in three-dimensional serpentine channel[J]. Results in Engineering, 2024, 24: 103362. |
| [5] | 谷德银, 李昌树, 杨豪, 等. 分形排布式穿流搅拌桨强化流体混沌混合行为[J]. 化工学报, 2024, 75(10): 3498-3506. |
| Gu D Y, Li C S, Yang H, et al. Fluid chaotic mixing behavior intensified by fractal-arranged perforated impeller[J]. CIESC Journal, 2024, 75(10): 3498-3506. | |
| [6] | Li A Q, Yao Y, Tang X Y, et al. Experimental and computational investigation of chaotic advection mixing in laminar rectangular stirred tanks[J]. Chemical Engineering Journal, 2024, 485: 149956. |
| [7] | 刘作华, 周毅林, 熊黠, 等. 逆流桨强化搅拌槽内流体混沌混合及流场结构失稳研究[J]. 化工学报, 2022, 73(1): 222-231. |
| Liu Z H, Zhou Y L, Xiong X, et al. Chaotic mixing intensification and flow field structure instability in stirred reactor by counter-flow pitched-blade turbine[J]. CIESC Journal, 2022, 73(1): 222-231. | |
| [8] | Han Q, Liu Z X, Li W M. Enhanced thermal performance by spatial chaotic mixing in a saw-like microchannel[J]. International Journal of Thermal Sciences, 2023, 186: 108148. |
| [9] | Asano S, Kudo S, Hayashi J I. Chaotic-flow-driven mixing in T- and V-shaped micromixers[J]. Chemical Engineering Journal, 2024, 489: 151183. |
| [10] | Jin G Y, Zheng Q Y, Zhu Z S, et al. Chaotic mixing coupled electromagnetic heating in a tubular reactor[J]. Journal of Food Engineering, 2025, 387: 112348. |
| [11] | Zhang Y, Li X Y, Zhang G, et al. Gas-rigid-flexible compound blade coupling enhanced experimental study on chaotic mixing of multiphase flow[J]. Particuology, 2024, 94: 356-372. |
| [12] | Hasan S I, Küçüka S, Ezan M A. Thermo-fluidic analysis of a single piezofan in longitudinal channel[J]. International Communications in Heat and Mass Transfer, 2021, 129: 105651. |
| [13] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
| Li X J, Chen W W, Lu S H. Coupled flow and heat transfer characteristics of piezoelectric fan with cross flow[J]. CIESC Journal, 2020, 71(S1): 149-157. | |
| [14] | Hu J Q, Geng T T, Wang K, et al. Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades[J]. International Journal of Heat and Mass Transfer, 2024, 220: 124965. |
| [15] | Hu J Q, Li X L, Fan Y H, et al. Reducing hot spot temperature through vibrating blade-driven winglets motion: numerical exploration and experimental validation[J]. Applied Thermal Engineering, 2025, 262: 125315. |
| [16] | Li X J, Li J Y, Chen W W, et al. Evolution of flow structure and heat transfer enhancement mechanism in impinging jets excited by piezoelectric fan[J]. International Journal of Heat and Mass Transfer, 2024, 228: 125631. |
| [17] | 张震, 闵春华, 张铭凯, 等. 锯齿形振动风扇对热壁面对流换热效果的影响[J]. 工程热物理学报, 2024, 45(8): 2453-2459. |
| Zhang Z, Min C H, Zhang M K, et al. Effect of serrated vibrating fans on convective heat transfer at heated wall surfaces[J]. Journal of Engineering Thermophysics, 2024, 45(8): 2453-2459. | |
| [18] | Park S H, Oh M H, Kim Y H, et al. Effects of freestream on piezoelectric fan performance[J]. Journal of Fluids and Structures, 2019, 87: 302-318. |
| [19] | Tiwari J, Yeom T. Enhancement of channel-flow convection heat transfer using piezoelectric fans[J]. Applied Thermal Engineering, 2021, 191: 116917. |
| [20] | Kim K, Yeom T. Numerical study on channel-flow convection heat transfer enhancement with piezoelectric fans under various operating conditions[J]. Applied Thermal Engineering, 2023, 219: 119674. |
| [21] | Zhong X L, Chan K C, Fu S C, et al. Enhancement of piezoelectric fan cooling by geometrical arrangements[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123479. |
| [22] | Li X J, Zhang J Z, Tan X M, et al. Enhancing forced-convection heat transfer of a channel surface with piezo-fans[J]. International Journal of Mechanical Sciences, 2022, 227: 107437. |
| [23] | Hu J Y, Jing C J, Zhao Y. Heat transfer enhancement research of dynamical vortex generator in a solar air heater by using the piezoelectric fan array[J]. Heat and Mass Transfer, 2020, 56(3): 825-847. |
| [24] | Gao Z G, Wang Z Q, Bai J H, et al. Dynamic regulation of the thermal performance of the S-CO2 minichannel using a piezoelectric oscillating fin[J]. International Journal of Thermal Sciences, 2023, 193: 108520. |
| [25] | Hu J Q, Fan Y H, Wang X X, et al. Mechanism of hot spot temperature reduction by a new combined system of vibrating blade and vortex generator[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107610. |
| [26] | Ali S, Habchi C, Menanteau S, et al. Three-dimensional numerical study of heat transfer and mixing enhancement in a circular pipe using self-sustained oscillating flexible vorticity generators[J]. Chemical Engineering Science, 2017, 162: 152-174. |
| [27] | Kang M S, Park S G, Dinh C T. Heat transfer enhancement by a pair of asymmetric flexible vortex generators and thermal performance prediction using machine learning algorithms[J]. International Journal of Heat and Mass Transfer, 2023, 200: 123518. |
| [28] | Ren F, Zhang F, Zhu Y N, et al. Enhancing heat transfer from a circular cylinder undergoing vortex induced vibration based on reinforcement learning[J]. Applied Thermal Engineering, 2024, 236: 121919. |
| [29] | Sun X, Suh C S, Sun C C, et al. Vortex-induced vibration of a flexible splitter plate attached to a square cylinder in laminar flow[J]. Journal of Fluids and Structures, 2021, 101: 103206. |
| [30] | Sun X, Ye Z H, Li J J, et al. Forced convection heat transfer from a circular cylinder with a flexible fin[J]. International Journal of Heat and Mass Transfer, 2019, 128: 319-334. |
| [31] | de Boer A, van Zuijlen A H, Bijl H. Review of coupling methods for non-matching meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(8): 1515-1525. |
| [32] | Rao K R, Kim D N, Hwang J J. Fast Fourier Transform: Algorithms and Applications[M]. Dordrecht: Springer, 2010: 170. |
| [33] | Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50. |
| [34] | Grassberger P, Procaccia I. Characterization of strange attractors[J]. Physical Review Letters, 1983, 50(5): 346-349. |
| [35] | Li A Q, Yao Y, Zhang X, et al. On the chaotic characteristics and turbulent mixing mechanisms of elliptical unbaffled stirred tanks[J]. AIChE Journal, 2025, 71(7): e18827. |
| [36] | Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||