CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 6077-6085.DOI: 10.11949/0438-1157.20250237
• Material science and engineering, nanotechnology • Previous Articles
Xingyue LIN1(
), Xiubin XU1(
), Xin LI2, Linjie WEI1, Hao WANG1, Xi YAO2(
), Xu WU1(
)
Received:2025-03-11
Revised:2025-04-10
Online:2025-12-19
Published:2025-11-25
Contact:
Xiubin XU, Xi YAO, Xu WU
林星月1(
), 徐秀彬1(
), 李鑫2, 韦林洁1, 王灏1, 姚希2(
), 吴旭1(
)
通讯作者:
徐秀彬,姚希,吴旭
作者简介:林星月(2000—),女,硕士研究生,1613902089@qq.com
基金资助:CLC Number:
Xingyue LIN, Xiubin XU, Xin LI, Linjie WEI, Hao WANG, Xi YAO, Xu WU. Liquid metal/cyclodextrin composite biomimetic memory hydrogel[J]. CIESC Journal, 2025, 76(11): 6077-6085.
林星月, 徐秀彬, 李鑫, 韦林洁, 王灏, 姚希, 吴旭. 液态金属/环糊精复合仿生记忆水凝胶[J]. 化工学报, 2025, 76(11): 6077-6085.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 LM/CD 40 (a), LM/CD 50 (b), LM/CD 60 (c), and LM/CD 70 (d) composites and their partially enlarged electron images at a rotation speed of 2000 r/min
Fig.12 Elemental distribution analysis of LM/CD organogel: (a) cross-sectional secondary electron image of gel, and (b) gallium (Ga) and (c) indium (In) elemental mappings, respectively; (d) secondary electron image of upper gel surface, and (e) corresponding elemental mappings (O, In, Ga, C); (f) secondary electron image of pristine lower gel surface, and (g) corresponding elemental mappings (O, In, Ga, C); (h) secondary electron image of lower gel surface after 300 cycles of tapping, and (i) corresponding elemental mappings (O, In, Ga, C)
| 元素 | 含量/%(质量分数) | |
|---|---|---|
| 上表面 | 下表面 | |
| C | 60.83 | 41.98 |
| O | 35.16 | 20.12 |
| Ga | 3.44 | 28.58 |
| In | 0.57 | 9.32 |
| 总量 | 100.00 | 100.00 |
Table 1 Elemental composition of top surface and bottom surface of hydrogel by EDS
| 元素 | 含量/%(质量分数) | |
|---|---|---|
| 上表面 | 下表面 | |
| C | 60.83 | 41.98 |
| O | 35.16 | 20.12 |
| Ga | 3.44 | 28.58 |
| In | 0.57 | 9.32 |
| 总量 | 100.00 | 100.00 |
| [1] | Kim M S, Almuslem A S, Babatain W, et al. Beyond flexible: unveiling the next era of flexible electronic systems[J]. Advanced Materials, 2024, 36(51): 2406424. |
| [2] | Wang M X, Xiao X, Siddika S, et al. Glassy gels toughened by solvent[J]. Nature, 2024, 631(8020): 313-318. |
| [3] | Huang J C, Qiu L T, Ni C J, et al. Shape memory polymers with patternable recovery onset regulated by light[J]. Advanced Materials, 2024, 36(39): 2408324. |
| [4] | Liu Y J, Song Y Z, Wu P Y. Self-evolving hierarchical hydrogel fibers with circadian rhythms and memory functions[J]. Advanced Materials, 2024, 36(32): 2404506. |
| [5] | Li L, Ai Z T, Wu J F, et al. A robust polyaniline hydrogel electrode enables superior rate capability at ultrahigh mass loadings[J]. Nature Communications, 2024, 15(1): 6591. |
| [6] | He H M, Li H, Pu A Y, et al. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels[J]. Nature Communications, 2023, 14(1): 759. |
| [7] | Xie X J, Xu Z G, Yu X, et al. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels[J]. Nature Communications, 2023, 14(1): 4289. |
| [8] | Wang Z, Xu X Y, Zhang K, et al. Continuous phase separation induced tough hydrogel fibers with ultrahigh conductivity for multidimensional soft electronics[J]. Advanced Functional Materials, 2025, 35(3): 2413478. |
| [9] | Wan B L, Liu N N, Zhang Z, et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels[J]. Carbohydrate Polymers, 2023, 314: 120929. |
| [10] | Eivazzadeh-Keihan R, Bahojb Noruzi E, Chidar E, et al. Applications of carbon-based conductive nanomaterials in biosensors[J]. Chemical Engineering Journal, 2022, 442: 136183. |
| [11] | Liu B C, Wang Y, Miao Y, et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin[J]. Biomaterials, 2018, 171: 83-96. |
| [12] | Song X P, Wang X R, Zhang J, et al. A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair[J]. Biomaterials, 2021, 273: 120811. |
| [13] | Liang Y P, Qiao L P, Qiao B W, et al. Conductive hydrogels for tissue repair[J]. Chemical Science, 2023, 14(12): 3091-3116. |
| [14] | Bernard F, Dargère D, Rechavi O, et al. Quantitative analysis of C. elegans transcripts by nanopore direct-cDNA sequencing reveals terminal hairpins in non trans-spliced mRNAs[J]. Nature Communications, 2023, 14(1): 1229. |
| [15] | Liu S L, Zhang W T, He J Z, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives[J]. Advanced Fiber Materials, 2024, 6(1): 36-67. |
| [16] | Dickey M D. Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 2017, 29(27): 1606425. |
| [17] | Lin Z W, Qiu X W, Cai Z, et al. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal[J]. Nature Communications, 2024, 15(1): 4806. |
| [18] | Jiang H J, Yuan B, Guo H T, et al. Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability[J]. Nature Communications, 2024, 15(1): 6138. |
| [19] | Li X K, Li M J, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices[J]. Advanced Functional Materials, 2018, 28(39): 1804197. |
| [20] | Alizadeh N, Nazari F. Thymol essential oil/β-cyclodextrin inclusion complex into chitosan nanoparticles: improvement of thymol properties in vitro studies[J]. Journal of Molecular Liquids, 2022, 346: 118250. |
| [21] | Wang Q, Ji X Y, Liu X, et al. Viscoelastic metal-in-water emulsion gel via host-guest bridging for printed and strain-activated stretchable electrodes[J]. ACS Nano, 2022, 16(8): 12677-12685. |
| [22] | Dickey M D, Chiechi R C, Larsen R J, et al. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature[J]. Advanced Functional Materials, 2008, 18(7): 1097-1104. |
| [23] | Chen W F, Tang Q Q, Zhong W J, et al. Directly printable and adhesive liquid metal ink for wearable devices[J]. Advanced Functional Materials, 2025, 35(1): 2411647. |
| [24] | Osborne T, Rhymer D, Werner D, et al. Investigating the impact of impeller geometry for a stirred mill using the discrete element method: effect of pin number and thickness[J]. Powder Technology, 2023, 428: 118810. |
| [25] | Wu S N, Zhang Y T, Li G W, et al. Simple, fast, and energy saving: room temperature synthesis of high-entropy alloy by liquid-metal-mediated mechanochemistry[J]. Matter, 2025, 8(3): 101986. |
| [26] | Qin Z Y, Jiang Q B, Zou Y C, et al. Synthesis of nanosized γ-cyclodextrin metal-organic frameworks as carriers of limonene for fresh-cut fruit preservation based on polycaprolactone nanofibers[J]. Small, 2024, 20(29): 2400399. |
| [27] | Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: drug delivery and beyond[J]. Carbohydrate Polymers, 2022, 297: 120033. |
| [28] | Yu R H, Wu L, Yang Z H, et al. Dynamic liquid metal-microfiber interlocking enables highly conductive and strain-insensitive metastructured fibers for wearable electronics[J]. Advanced Materials, 2025, 37(6): 2415268. |
| [29] | Zheng Y, Liu H, Yan L, et al. Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics[J]. Advanced Functional Materials, 2024, 34(7): 2310653. |
| [30] | Zhang Y, Wang Z, Wang S T, et al. Dynamic-wetting liquid metal thin layer induced via surface oxygen-containing functional groups[J]. ACS Nano, 2025, 19(4): 4913-4923. |
| [31] | Liu W L, Ye J C, Wang Y L, et al. Multimodal antibacterial E-skin patch driven by oxidative stress for real-time wound-status monitoring and integrated treatment of chronic wounds[J]. Advanced Functional Materials, 2025, 35(22): 2424698. |
| [32] | Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158. |
| [33] | Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties[J]. Advanced Materials, 2002, 14(16): 1120-1124. |
| [34] | Zhang Q T, Lu H D, Yun G L, et al. A laminated gravity-driven liquid metal-doped hydrogel of unparalleled toughness and conductivity[J]. Advanced Functional Materials, 2024, 34(31): 2308113. |
| [1] | Xiaochen ZHANG, Zhongshan LU, Teng GUO, Heng GUI, Hongbing SONG, Meng XIAO. Isolation and study of the degradation mechanism of hydroxyl-terminated polybutadiene-degrading strain [J]. CIESC Journal, 2025, 76(8): 4205-4216. |
| [2] | Xiaohong HU, Xuan XU, Houtao CHEN, Fengxian FAN, Mingxu SU. Stochastic simulation of acoustic agglomeration of fine particles in flue gas [J]. CIESC Journal, 2025, 76(8): 3964-3975. |
| [3] | Jiahao LIN, Fangzhong FU, Haohui YE, Jin HU, Mingcan YAO, Helin FAN, Xu WANG, Ruixiang WANG, Zhifeng XU. Effect of NdF3 content on local structure and transport properties of NdF3-LiF molten salt [J]. CIESC Journal, 2025, 76(8): 3834-3841. |
| [4] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [5] | Chenrui MA, Xiang WANG, Minhang SONG, Jun JING, Qiong WU, Yun HUANG. Theoretical research on collision behavior and production evolution of titania particles in an industrial oxidation reactor of chlorination process [J]. CIESC Journal, 2025, 76(7): 3316-3324. |
| [6] | Wenjia LIU, Ruxue DU, Siqi WANG, Tingxian LI. Research status and application of functional phase change materials for electro-thermal conversion in thermal energy storage [J]. CIESC Journal, 2025, 76(7): 3185-3196. |
| [7] | Naisheng GUO, Xiaobo ZHU, Shuang WANG, Ping CHEN, Zhaoyang CHU, Zhichen WANG. Research progress on high and low temperature performance and influencing factors of polyurethane modified asphalt [J]. CIESC Journal, 2025, 76(6): 2505-2523. |
| [8] | Changyu LI, Qiang ZENG, Jie XIAO, Yangjie ZHANG, zheng ZHANG, Yuanhua LIN. Study on interface modification of LATP-based solid electrolyte membrane by PVDF [J]. CIESC Journal, 2025, 76(6): 2974-2982. |
| [9] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [10] | Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers [J]. CIESC Journal, 2025, 76(5): 2101-2118. |
| [11] | Zihang ZHAI, Jie JIANG, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis and properties of ternary random copolyester PBSF based on 2,5-furandicarboxylic acid [J]. CIESC Journal, 2025, 76(2): 868-878. |
| [12] | Xin YING, Miao DU, Pengju PAN, Guorong SHAN. Synthesis, structure and properties of high refrective index polythiourethane [J]. CIESC Journal, 2025, 76(2): 858-867. |
| [13] | Jiaxin WANG, Yanhong WEI, Shunyang NONG, Yanshu XIONG, Mei LI, Wen LI. Molecular mechanism analysis of melanoidin adsorption by polyamine-modified chitosan aerogel based on multiple quantum chemical theory calculations [J]. CIESC Journal, 2025, 76(1): 107-119. |
| [14] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
| [15] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||