CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3686-3695.DOI: 10.11949/0438-1157.20241489
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Liang QIAO1(
), Shang LI2, Xinliang LIU3, Ming WANG1, Pei ZHANG2, Yingfei HOU1(
)
Received:2024-12-23
Revised:2025-02-12
Online:2025-08-13
Published:2025-07-25
Contact:
Yingfei HOU
乔亮1(
), 李尚2, 刘新亮3, 王明1, 张沛2, 侯影飞1(
)
通讯作者:
侯影飞
作者简介:乔亮(1999—),男,硕士研究生,1551373854@qq.com
基金资助:CLC Number:
Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil[J]. CIESC Journal, 2025, 76(7): 3686-3695.
乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695.
Add to citation manager EndNote|Ris|BibTeX
| 原 油 | 黏度/(mPa·s) | 饱和分/%(质量) | 芳香分/%(质量) | 胶质/%(质量) | 沥青质/%(质量) |
|---|---|---|---|---|---|
| 胜利稠油 | 9828 | 22.47 | 25.21 | 32.78 | 12.69 |
| 辽河稠油 | 7392 | 23.69 | 27.47 | 27.25 | 14.97 |
Table 1 Physical properties of heavy oil
| 原 油 | 黏度/(mPa·s) | 饱和分/%(质量) | 芳香分/%(质量) | 胶质/%(质量) | 沥青质/%(质量) |
|---|---|---|---|---|---|
| 胜利稠油 | 9828 | 22.47 | 25.21 | 32.78 | 12.69 |
| 辽河稠油 | 7392 | 23.69 | 27.47 | 27.25 | 14.97 |
| 系统 | 饱和分 | 芳香分 | 胶质 | 沥青质1 | 沥青质2 | SBM |
|---|---|---|---|---|---|---|
| Oil1 | 60 | 80 | 80 | 20 | — | — |
| Oil1+SBM | 60 | 80 | 80 | 20 | — | 20 |
| Oil2 | 60 | 80 | 80 | — | 30 | — |
| Oil2+SBM | 60 | 80 | 80 | — | 30 | 20 |
Table 2 Molecular composition of each simulated heavy oil system
| 系统 | 饱和分 | 芳香分 | 胶质 | 沥青质1 | 沥青质2 | SBM |
|---|---|---|---|---|---|---|
| Oil1 | 60 | 80 | 80 | 20 | — | — |
| Oil1+SBM | 60 | 80 | 80 | 20 | — | 20 |
| Oil2 | 60 | 80 | 80 | — | 30 | — |
| Oil2+SBM | 60 | 80 | 80 | — | 30 | 20 |
| 原 油 | 表观降黏率/% | 净降黏率/% |
|---|---|---|
| 胜利稠油 | 66.67 | 27.34 |
| 辽河稠油 | 58.60 | 21.78 |
Table 3 Effect of SBM addition on different heavy oil
| 原 油 | 表观降黏率/% | 净降黏率/% |
|---|---|---|
| 胜利稠油 | 66.67 | 27.34 |
| 辽河稠油 | 58.60 | 21.78 |
| [1] | Boodlal D, Alexander D, John E, et al. A heavy oil reserve analysis for Trinidad and Tobago[J]. Arabian Journal of Geosciences, 2022, 15(7): 673. |
| [2] | Sun J, Guo L J, Yin X Y, et al. Investigation on drag reduction of aqueous foam for transporting thermally produced high viscosity oil[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110062. |
| [3] | Mao J C, Kang Z, Yang X J, et al. Synthesis and performance evaluation of a nanocomposite pour-point depressant and viscosity reducer for high-pour-point heavy oil[J]. Energy & Fuels, 2020, 34(7): 7965-7973. |
| [4] | Adeyanju O A, Oyekunle L O. Experimental study of water-in-oil emulsion flow on wax deposition in subsea pipelines[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106294. |
| [5] | Sánchez S, Ascanio G, Sánchez-Minero F, et al. Conjugate thermal-hydrodynamic model for the study of heavy oil transport[J]. Journal of Petroleum Science and Engineering, 2019, 179: 997-1011. |
| [6] | Li S Y, Hu Z H, Lu C, et al. Microscopic visualization of greenhouse-gases induced foamy emulsions in recovering unconventional petroleum fluids with viscosity additives[J]. Chemical Engineering Journal, 2021, 411: 128411. |
| [7] | Pei H H, Shu Z, Zhang G C, et al. Experimental study of nanoparticle and surfactant stabilized emulsion flooding to enhance heavy oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 163: 476-483. |
| [8] | Zhao D W, Wang J, Gates I D. Thermal recovery strategies for thin heavy oil reservoirs[J]. Fuel, 2014, 117: 431-441. |
| [9] | Yang Y, Liu W C, Yu J F, et al. Technology progress in high-frequency electromagnetic in situ thermal recovery of heavy oil and its prospects in low-carbon situations[J]. Energies, 2024, 17(18): 4715. |
| [10] | Chen S H, AlSofi A M, Wang J X, et al. A polycyclic-aromatic hydrocarbon-based water-soluble formulation for heavy oil viscosity reduction and oil displacement[J]. Energy & Fuels, 2023, 37(16): 11864-11880. |
| [11] | Wang T Y, Wang C H, Ma H, et al. Preparation of temperature-sensitive SiO2-PSBMA for reducing the viscosity of heavy oil[J]. Energy & Fuels, 2023, 37(3): 1896-1906. |
| [12] | Lei T M, Cao J, Li A F, et al. Synthesis and oil displacement performance evaluation of a novel functional polymer for heavy oil recovery[J]. Journal of Molecular Liquids, 2024, 402: 124746. |
| [13] | Chen M F, Wang Y F, Chen W H, et al. Synthesis and evaluation of multi-aromatic ring copolymer as viscosity reducer for enhancing heavy oil recovery[J]. Chemical Engineering Journal, 2023, 470: 144220. |
| [14] | Mao J C, Liu J W, Peng Y K, et al. Quadripolymers as viscosity reducers for heavy oil[J]. Energy & Fuels, 2018, 32(1): 119-124. |
| [15] | Mao J C, Liu J W, Wang H B, et al. Novel terpolymers as viscosity reducing agent for Tahe super heavy oil[J]. RSC Advances, 2017, 7(31): 19257-19261. |
| [16] | Sun J H, Zhang F S, Wu Y W, et al. Overview of emulsified viscosity reducer for enhancing heavy oil recovery[J]. IOP Conference Series: Materials Science and Engineering, 2019, 479: 012009. |
| [17] | Chen X Y, Wang N, Xia S Q. Research progress and development trend of heavy oil emulsifying viscosity reducer: a review[J]. Petroleum Science and Technology, 2021, 39(15/16): 550-563. |
| [18] | Saad M A, Kamil M, Abdurahman N H, et al. An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions[J]. Processes, 2019, 7(7): 470. |
| [19] | Ahmadi M, Chen Z X. Challenges and future of chemical assisted heavy oil recovery processes[J]. Advances in Colloid and Interface Science, 2020, 275: 102081. |
| [20] | Lv X B, Fan W Y, Wang Q T, et al. Synthesis, characterization, and mechanism of copolymer viscosity reducer for heavy oil[J]. Energy & Fuels, 2019, 33(5): 4053-4061. |
| [21] | Yu J, Quan H P, Huang Z Y, et al. Interaction between hydrophobic chitosan derivative and asphaltene in heavy oil to reduce viscosity of heavy oil[J]. International Journal of Biological Macromolecules, 2023, 247: 125573. |
| [22] | Zhang A P, Quan H P, Yu J, et al. Hydroxyl-functionalized carbon nanoparticles alter the asphaltene aggregate structure and reduce the viscosity of heavy oil[J]. ACS Applied Nano Materials, 2024, 7(18): 21925-21935. |
| [23] | Ahmadi M, Chen Z X. Spotlight onto surfactant-steam-bitumen interfacial behavior via molecular dynamics simulation[J]. Scientific Reports, 2021, 11(1): 19660. |
| [24] | Quan H P, Li P F, Duan W M, et al. A series of methods for investigating the effect of a flow improver on the asphaltene and resin of crude oil[J]. Energy, 2019, 187: 115872. |
| [25] | Liu D, Song Q, Tang J S, et al. Interaction between saturates, aromatics and resins during pyrolysis and oxidation of heavy oil[J]. Journal of Petroleum Science and Engineering, 2017, 154: 543-550. |
| [26] | da Costa L M, Stoyanov S R, Gusarov S, et al. Density functional theory investigation of the contributions of π-π stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds[J]. Energy & Fuels, 2012, 26(5): 2727-2735. |
| [27] | Gray M R, Tykwinski R R, Stryker J M, et al. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy & Fuels, 2011, 25(7): 3125-3134. |
| [28] | Sjöblom J, Simon S, Xu Z H. Model molecules mimicking asphaltenes[J]. Advances in Colloid and Interface Science, 2015, 218: 1-16. |
| [29] | Li Z, Han T K, Li J W, et al. Pathway of oil-soluble additives to reduce heavy crude oil viscosity depends on the molecular characteristics of asphaltene[J]. Energy & Fuels, 2024, 38(6): 4990-4997. |
| [30] | Wang C H, Gao L Y, Liu M H, et al. Self-crystallization behavior of paraffin and the mechanism study of SiO2 nanoparticles affecting paraffin crystallization[J]. Chemical Engineering Journal, 2023, 452: 139287. |
| [31] | Xu J P, Wang N, Xue S, et al. Insights into the mechanism during viscosity reduction process of heavy oil through molecule simulation[J]. Fuel, 2022, 310: 122270. |
| [32] | Wang C H, Gao L Y, Liu M H, et al. Viscosity reduction mechanism of surface-functionalized Fe3O4 nanoparticles in different types of heavy oil[J]. Fuel, 2024, 360: 130535. |
| [33] | Wang C H, Gao L Y, Liu M H, et al. Viscosity reduction mechanism of functionalized silica nanoparticles in heavy oil-water system[J]. Fuel Processing Technology, 2022, 237: 107454. |
| [34] | Guan D, Feng S, Zhang L Z, et al. Mesoscale simulation for heavy petroleum system using structural unit and dissipative particle dynamics (SU-DPD) frameworks[J]. Energy & Fuels, 2019, 33(2): 1049-1060. |
| [35] | Zhang L Z, Chen P C, Pan S, et al. Structure-dynamic function relations of asphaltenes[J]. Energy & Fuels, 2021, 35(17): 13610-13632. |
| [36] | Ahmadi M, Chen Z X. Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions[J]. Fuel, 2021, 288: 119729. |
| [37] | Ahmadi M, Chen Z X. Molecular interactions between asphaltene and surfactants in a hydrocarbon solvent: application to asphaltene dispersion[J]. Symmetry, 2020, 12(11): 1767. |
| [38] | 李熠宇. 海上稠油降黏剂分子模拟及合成研究[D]. 青岛: 中国石油大学(华东), 2020. |
| Li Y Y. Molecular simulation and synthesis of viscosity reducer for heavy marine oils[D]. Qingdao: China University of Petroleum (East China), 2020. | |
| [39] | Li Z, Zhu B J, Han T K, et al. Different mechanisms of two oil-soluble additives to reduce heavy crude oil viscosity[J]. Journal of Molecular Liquids, 2024, 414: 126196. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Xin WU, Jianying GONG, Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG. Experimental study on the droplet motion on the hydrophobic surface under ultrasonic excitation [J]. CIESC Journal, 2025, 76(S1): 133-139. |
| [3] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [4] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [5] | Pengguo XU, Ziheng MENG, Ganyu ZHU, Huiquan LI, Chenye WANG, Zhenhua SUN, Guocai TIAN. Study on deep carbonization process and kinetics of crude lithium carbonate with CO2 microbubbles [J]. CIESC Journal, 2025, 76(7): 3325-3338. |
| [6] | Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel [J]. CIESC Journal, 2025, 76(6): 3115-3124. |
| [7] | Bilin LIANG, Qian YU, Siqi JIA, Fang LI, Qiming LI. Structural modulation and gas separation performance of Ni-MOF-74 metal-organic framework membranes [J]. CIESC Journal, 2025, 76(6): 2714-2721. |
| [8] | Naisheng GUO, Xiaobo ZHU, Shuang WANG, Ping CHEN, Zhaoyang CHU, Zhichen WANG. Research progress on high and low temperature performance and influencing factors of polyurethane modified asphalt [J]. CIESC Journal, 2025, 76(6): 2505-2523. |
| [9] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [10] | Qingping ZHAO, Min ZHANG, Hui ZHAO, Gang WANG, Yongfu QIU. Hydrogen bond effect and kinetic studies on hydroesterification of ethylene to methyl propionate [J]. CIESC Journal, 2025, 76(6): 2701-2713. |
| [11] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [12] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [13] | Bing ZHANG, Jianhui LI, Xinrong MA, Yang CHEN, Jinping LI, Libo LI. Research progress of MOF preparation by steam-assisted method [J]. CIESC Journal, 2025, 76(5): 2026-2041. |
| [14] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [15] | Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers [J]. CIESC Journal, 2025, 76(5): 2101-2118. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||